

वार्षिक रिपोर्ट Annual Report 2007 - 08

Philos Philos

अखिल भारतीय समन्वित मसाला अनुसंधान परियोजना ए आई सी आर पी एसे All India Coordinated Research Project on Spices

AICRPS

iisr

भारतीय मसाला फसल अनुसंधान संस्थान

(भारतीय कृषि अनुसंधान परिषद्)

मेरिकुन्नु पी. ओ, कालिकट - ६७३०१२, केरल, भारत

Indian Institute of Spices Research

(Indian Council of Agricultural Research)
Calicut - 673012, Kerala, India.

ALL INDIA COORDINATED RESEARCH PROJECT ON SPICES

ANNUAL REPORT 2007-08

(Indian Council of Agricultural Research)

CALICUT -.673 012, KERALA, INDIA

CONTENTS

Project Coordinator's report (Hındi)	V
Project Coordinator's report	XI
Black pepper	1
Cardamom	10
Ginger	20
Turmeric	29
Tree Spices	36
Coriander	40
Cumin	52
Fennel	56
Fenugreek	62
Paprika	71
ICAR Ad-hoc projects	72
List of publications	76
List of research programmes	79
Staff position	86
Budget provision	89
Weather data	91
AICRPS Centres	97

परियोजना समन्वयक की रिपोर्ट

अखिल भारतीय रामन्वित मसाला अनुसंधान परियोजना (ए आई सी आर पी एस) अपना मुख्यालय भारतीय मसाला फसल अनुसंधान संस्थान, कालिकट में 12 मसाले फरालों में अनुरांधान का आयोजन और समन्वय करने के लिए निहित होता है। ए आई सी आर पी एस का अब 19 केन्द्र है, जो 14 राज्यों में व्याप्त 15 राज्य कृषि विश्व विद्यालय में स्थित है! इसके अलावा 4 आश्रित केन्द्र है, जिसमें भारतीय इलायची अनुसंधान संस्थान (स्पाइसस बोर्ड) भी शामिल होता है, इस परियोजना के साथ सहयोगी कार्य किये जा रहे हैं! ए आई सी आर पी एस की प्ररतावित ग्यारहवीं योजना की बजट 1400 लाख रूपए है जिसमें वर्ष 2007-08 का 231.00 लाख रूपए (भा कृ अनु प का हिस्सा) भी शामिल होता है! अधिदेश मसाले फसलों का लगभग 115 शोध कार्यक्रम विभिन्न केन्द्रों में आयोजित किये जा रहे हैं!

काली मिर्च

ए आई सी आर पी एस के विभिन्न केन्द्रों में काली मिर्च के पाँच सौ पचासी अक्सशनों को बनाये रखे जाते हैं जिसमें किल्टवेटड, विजातीय, वन्य और संबन्धित स्पीसीस भी शामिल होते है! जर्मप्लासम के चरिव्रांकन के फलस्वरूप उच्च उपज वाले अक्सशनों जैसे पन्नियूर केन्द्र से करिमुंडा II (5.60 कि. ग्राम हरे/बेल) और विलयारमुंडी (3.45 कि. ग्राम हरे बरी/बेल) की पहचान की गई! पन्नियुर I (2.63 कि. ग्राम सुखे/बेल) और पी एन-57 (4.0 कि. ग्राम हरे / बेल) को कमश: रिारसी और येरकाड केन्द्र से प्राप्त उच्च उपजवाले के रूप में पहचान की गई! पन्नियूर केन्द्र में विकसित अन्तर प्रजातीय संकरजो के बीच पी-6 x पी-5 को 1.1 कि. ग्राम/बेल के ताजी उपज देने में आशाजनक देख लिया! अम्बलवयल मे सीवीटी में मूल्यांकन किये काली मिर्च के विभिन्न किल्टिवर्स के बीच सीयूएल-5489 में उच्चतम रपाइक लंबाई (13.34 से. मीटर) देख ली और सीयूएल-5308 (12.46 से. मीटर) और पन्नियूर-1 (12.41 से. मीटर) उसके निकट आते हैं! पन्नियूर केन्द्र में अधिकतम उपजता / बेल सीयुएल-5489 (1.847 कि. ग्राम हरे बरी / बेल) में अंकित किया और करिमुंडा ओपी, सीयुएल-5308, पन्नियूर-। करिमुंडा और कलक्शन 1041 उसके बाद आते है। घापोली केन्द्र में काली मिर्च कतरनों के सीधे तने की मूल लगाई से यह सूचित करता है कि दो नोडवाली कतरनें तीन और पाँच नोडवाली कतरनों की अपेक्षा उत्तम हो गये। एकीकृत पोषण प्रबन्ध उपचार करने पर पन्नियूर और सिरसी केन्द्रों में जैविक और अजैविक उपचारों की अपेक्षा अधिकतम उपजता ॲकित की जहाँ अजैविक और एकीकृत पोषण प्रबन्ध उपचार दोनों पीचीपराई केन्द्रों में काफी दूर पर है! खुर गलन रोग प्रबन्धन के लिए उपलब्ध प्रचरित तकनोलिजयों के बीच सभी उपचारों ने पाम्पाडुमपारा केन्द्र में खुर गलन रोग आपतन कम करने में महनीयता प्रस्तुत की। चिन्तापल्ली, पन्नियूर और पाग्पाड्मपारा केन्द्रो में रोग नियन्त्रण में पोटैशियम फॉसफोनट का (0.3%) छिडकाव, दवा लगाना और द्राइकोडेरमा हरजियानम 50 ग्राम / बेल की दर से 1 कि.ग्राम नीम केक के साथ लगाना चिन्तापल्ली, पन्नियूर और पाम्पाडुमपारा केन्द्रों में रोग नियन्त्रण करने के लिए उत्तम उपचार के रूप मे देख लिया जहाँ मुडिगरे केन्द्र मे बोर्डियो मिश्रण (1%) छिडकना और सीओसी (0.3%) लगाना प्रभावी देखा गया। मूल्याकन किये बयोरेशनल में नीम गोल्ड (0.5%) को सीपी शल्क (लेपिडो साफस पाइपरिस) की सख्या का दमन करने में प्रभावी देख लिया और शल्कों की सबसे कम सख्या बेलों पर डिमेथोयट (0.05%) उपचार करने पर प्राप्त की!

इलायची

ए आई सी आर पी एस के दो केन्द्रो (पाम्पाडुमपारा और मुडिगरे) में तीन सौ पाँच जर्मप्लासम को बनाये रखें गये! सी वी टी के अन्तर्गत सी एल-722, पी एस-27, एम सी सी-309 और एम सी सी-246 को मुडिगरे में सूखें कैफ्यूल उपजता में (337.96 कि. ग्राम/हेक्टर) आशाजनक देख लिया! उपज परीक्षण के आधार पर पी एस-27 और एम एच सी-26 को पाम्पाडुमपारा केन्द्र में आशाजनक प्रविष्टि के रूप में पहचान किया गया! इलायची में आयोजित जैव उर्वरक परीक्षण से प्रकट होता है कि अजैविक फाँसफोरस अकेला लगाना या पी.सोलुबिलाइजर के साथ लगाना अन्य उपचारों की अपेक्षा अत्यन्त महत्वपूर्ण देख लिया! कैफ्यूल पर बाधित पनिकल और क्लम्प बाधा तथा राइजोम गलन रोग को टी. हरजियानम के साथ उपचार किये प्लोटों में और बैक्टीरिया कनसोर्टियम 50 ग्राम/पौधे की दर से लगाकर उपचार किये प्लोटों में बहुत कम देख लिया। चार कीटनाशियों जैसे फोराइट, फिप्रोनिल, थियामेथाक्सम और इमिडाक्लोप्रिड और तीन जैविक कीटनाशियों जैसे नीम केक, मत्स्य तेल रोसिन साबुन और नीम बीज गरी सार की प्रभावोत्पादकता को नये रोपण किये इलायची बागों में तना मकखी के प्रबन्धन के लिए तुलना की गई और यह देख लिया कि फोराइट, इमिडाक्लोप्रिड, थियामेथाक्सम, और नीम केक को अन्य रसायन उपचारों की अपेक्षा प्रत्येक झुरमुट में मर गये इलायची की न्यूनतम संख्या अंकित करने में उच्चतम देख लिया! इलायची के मूल सूंडी की संख्या में महत्वपूर्ण कमी इमिडाक्लोप्रिड (0.006%) और एच. इन्डिका (100 आई जे/ सूंडी) का संयुक्त उपचार किये प्लोटों में देख लिया!

अदरक

ए आई सी आर पी एस के केन्द्रों के अन्तर्गत 659 अक्सशनों का अदरक जर्मप्लासम बनाये रख दिया गया! पोटागी में किये सी वी टी परीक्षण से अधिकतम उपजता वी, ई, -5 (29.21 टन / हेक्टर) में देख लिया और वी, ई, -2 (28.29 टन / हेक्टर) 32 29% और 28.12% अधिक उपजता प्रदान करके राष्ट्रीय चेक सुप्रभा इसके पीछे आता है! जीन प्रकार जैसे एसजी-27 / 04, एस जी-45 / 04, एस जी-896 707, एस जी-827, एसजी-716, एसजी-682 और 51 / 04 को उच्च उपजता एवं उच्च गुणवत्ता के प्रकार के रूप में पहचान की गई! पोटांगी केन्द्र में वी ई, -2.को उच्च उपजवाले कम रेशा वाले अदरक अक्सशन के रूप में जारी करने के लिए आशाजनक होते है! विभिन्न केन्द्रों में किये परीक्षणों से यह प्रकट होता है कि जिक सल्फेट (60 और 90 डीएपी) 0.05%, बोराक्स (60 और 90 डीएपी) 0.2%, और फरस सल्फेट (60 और 90 डीएपी) 1.0% पत्तों पर छिडकने से उपजता और गुणवत्ता पैरामीटर्स में वृद्धि हुई! कुमारगंज में राइजोम गलन रोग के लिए किये गये अध्ययन से यह प्रकट होता है कि राइजोम गलन का कम आपतन (24.00%) और अधिकतम राइजोम उपजता 45 55 किन्टल / हेक्टर जब राइजोम को 51° से ग्रेड तक गरम किये पानी में 30 मिनुट द्वाइकोडरमा हरजियानम में और 30 मिनुट नीम केक के मिश्रण में रखकर बीज उपचार करने पर प्राप्त होता है!

हल्दी

ए आई सी आर पी एस के अन्तर्गत आठ केन्द्रों में एक हजार दो सौ अरसी जर्मप्लासम अक्सशनों को बनाये रख दिये! इनमें से पर्ण चित्ती और पर्ण दाग रोगों के प्रति प्रतिरोधकता की छानबीन किये 265 हल्दी जर्मप्लासम अक्सशनों में हल्दी जर्मप्लासम अक्सशनें जैसे सी एल -1, 2, 3, 6, 14, 22, 25, 31, 32, 33, 53, 54, 148, 153, 230 को पर्ण चत्ती (8-10 पीडीआई) के लिए प्रतिरोधक देख लिया और पर्ण दाग के लिए अक्सशने जैसे, सी एल - 8, 9, 139, 153, 160 और 161 प्रतिरोधक (10 पीडीआई) होते है! रोग आपतन के लिए किये गये सर्वेक्षण से सूचित होता है कि तीन प्रमुख रोगें जैसे टफरीना स्पीसीस दवारा होनेवाले पर्ण दाग, कोलटोद्राइकम स्पीसीस द्वारा होनेवाले पर्ण चित्ती और राइजोम गलन कूचबिहार के दो ब्लोक मे और एक कूचबिहार जिला के दिनहटा ब्लोक में प्रतिरोधक देख लिया! दुग्गिराला रेड चेक प्रजाति की तुलना में पोटांगी में , पीटीएस -15 को अधिक ताजा राइजोग उपज (25.5टन / हेक्टर) के लिए अंकित किया जिसके बाद आता है आई टी.1 (24.2टन / हेक्टर)! जर्मप्लासम अक्सशनों में कुरकुमिन की माद्रा में कोयंबतोर में 3.0 से 3.5% तक का अन्तर होता है! कुरकुमिन की अधिकतम मात्रा 3.5% अक्सशन संख्या सीएल-57 द्वारा अंकित किया! ओलिओरसिन की मात्रा में 8.5 से 12.5% तक का अन्तर होता है और अधिकतम ओलिओरसिन की माव्रा सीएल-219 (12.5%) द्वारा अंकित किया! अक्सशनों के बीच सुगन्ध तेल की माव्रा में 2.0 से 4.5% तक का अन्तर होता है! सुगन्ध तेल की अधिकतम माव्रा (4.5%) सीएल-20 द्वारा अंकित किया! अक्सशन पी.टी.एस-43 को पोटांगी केन्द्र में उच्च उपजता एवं अधिक कुरकुमिन मात्रा के रूप में जारी करने के लिए आशाजनक पहचान की गई! एकीकृत उपचार से अधिकतम राइज़ोम उपजता (24.8टन / हेक्टर) अंकित किया जिसके बाद आता है अजैविक (22.9टन / हेक्टर) जहाँ जैविक उपचार के दवारा जगतियाल केन्द्र में हल्दी के जैविक खेती परीक्षण में 21.2टन / हेक्टर अंकित किया! मुदा में अहाता खाद 30 टन/हेक्टर+20 क्विन्टल/हेक्टर वर्मी कम्पोस्ट+8 क्विन्टल/हेक्टर नीम ओयल केक लगाने पर पौधों की अधिकतम उंचाई (126.67 से. मी.) प्रत्येक पौधों के टिल्लर्स की संख्या (5.40), प्रत्येक टिल्लर्स में पत्तों की संख्या (14.60) और प्रत्येक बरतन से उपजता (15. 20 कि. ग्राम / 3मीटर²) या उपजता (50. 67 टन / हेक्टर) प्रदान किये जिसके बाद धोली केन्द्र में मुदा में अहाता खाद 30 टन/हेक्टर+ 15 क्विन्टल/हेक्टर वर्मी कम्पोस्ट+ 8 क्विन्टल / हेक्टर नीम ओयल केक लगाने पर प्राप्त हेता है!

वृक्ष प्रजातियों

ए आई सी आर पी एस के अन्तर्गत लौंग की 37, जायफल की 119, दालचीनी की 39 और कैसिया की 6 जर्मप्लासम बनाये रख दिये गये! पीचिपराई में किये दालचीनी जर्मप्लासम के लक्षण वर्णन से छाल की उपजता 469ग्राम सूखे छाल / पौधा और पत्तों की उपजता 6.3 कि.ग्राम / पौधा देनेवाले सेलक्शन 65 की पहचान की गई! पीचिपराई से एक साधारण संग्रह की भी पहचान की गई जो अधिक पर्ण उपजता 6.2 कि.ग्राम / पौधा और छाल उपजता 464.5 ग्राम / पौधा प्रदान करनेवाला है।

धनिया

विभिन्न केन्द्रों में धनिया की एक हजार आठ सौ पचानबे जर्मप्लासम बनाये रख दिये गये। हिसार में किये आई ई टी में डीएच 220 और डीएच 233 जैसे दो प्रविष्टियों को उच्च उपजवाले के रूप में पहचान की गई और अधिक मूल्यांकन के लिए समन्वित प्रजातीय परीक्षण में शामिल किया! कोयंबतोर में किये सीवीटी परीक्षण से एलरीसी 170 और यूडी 206 को कमशः 928.33 कि. ग्राम/हेक्टर और 923.33 कि. ग्राम/हेक्टर उपजता के साथ उच्च उत्पादक के रूप में पहचान की गई! प्रस्तुत वर्ष हिसार से तीन प्रविष्टियों जैसे सीओआर 5 (1913 कि. ग्राम/हेक्टर) सीओआर 4 (1825 कि. ग्राम/हेक्टर) और सीओआर 2 (1670 कि. ग्राम/हेक्टर) को उच्च उत्पादक के रूप में पहचान की गई! एलरीसी 244 (18.9 टन/हेक्टर) एलसीसी 233 (18.5 टन/हेक्टर) और एलसीसी 234 (18.0 टन/हेक्टर) को कोयंबतोर केन्द्र में अच्छे पर्ण प्रकार के रूप में पहचान की गई! सीओआर 4ए सीओआर 10, सीओआर 11, सीओआर 12, सीओआर 13, सीओआर 14, सीओआर 15 को घोली केन्द्र में देर से पकनेवालों के रूप में पहचान की गई! कुमारगंज में सीओआर 9 (19.90 क्विन्टल/हेक्टर) सीओआर 8 (19.37 क्विन्टल/हेक्टर) को उच्च उपजवालों के रूप में पहचान की गई! धिनया पर जैव नियामकों के प्रभाव पर किये अध्ययन से यह सूवित करता है कि धान उपज में 693 कि.ग्राम/हेक्टर से 901.2 कि. ग्राम/हेक्टर तक का अन्तर होता है! अधिकतम धान उपज 901.2 कि. ग्राम/हेक्टर बुआई के 40 दिन बाद टाइकोन्टानोल 0.5 मि. लिटर छिडकने से प्राप्त हो गथे। कोयंबतोर में सूखां राह्यता के लिए मूल्यांकन किये पचास उच्च उपजवाले जीन प्रकारों में, जीन प्रकार सीएस 127 को आशाजनक देख लिया! बुआई के 60 दिनों के बाद प्रयूडोमोनास (आई आई एसआर 6 वियुक्तियाँ) बीज उपचार एवं पत्तों पर छिडकना धिनया में पाउडरी मिल्डयू के आधिक्य को कम करने में प्रभावी हो गये!

जीरा

जोबनर और जगुदान केन्द्र ने जीरा के 623 जर्मप्लासम बनाये रख दिये! जोबनर में म्लानी, ब्लाइट और पाउडरी मिल्डयू के प्रति आई ई टी परीक्षण किये दस प्रविष्टियों से युसी-331 और युसी-225 को म्लानी, ब्लाइट और पाउडरी मिल्डयू के प्रति प्रतिरोधक पहचान की गई! जगुदान में जीरा की वृद्धि और उपजता पर रिजोबैक्टीरिया के प्रभाव पर अध्ययन करने के लिए किये परीक्षण से यह देख लिया कि रिज़ोबैक्टीरिया लगाने से जीरा की उपजता और गुणवत्ता बढाने लायक कोई महत्वपूर्ण रवभाव नहीं देख लिया ! ब्लाइट को नियन्द्रण करने के लिए मैनकोजेब 0.25% बुआई के 40, 50, 60 और 70 दिनों के बाद छिडकना प्रभावी होता है! ब्लाइट को नियन्द्रण करने के लिए प्रभावी देखे गये अन्य तरीके है मध्दा सौरीकरण + मैनकोजेब 0.25% की दर में बुआई के 60 दिनों के बाद छिडकना और वर्मीकम्पोस्ट + द्वाइकोडरमा हर्जियानम मिट्टी में लगाना + मैनकोजेब 0.25% की दर में बुआई के 60 दिनों के बाद छिडकना और वर्मीकम्पोस्ट + द्वाइकोडरमा हर्जियानम मिट्टी में लगाना + मैनकोजेब 0.25% की दर में बुआई के 60 दिनों के बाद छिडकना भी उत्तम होता है।

सौंफ

ए आई सी आर पी एस के अन्तर्गत कुल 617 सौंफ जर्मप्लसम बनाये रख दिये गये! हिसार से एच एफ 131, और एच एफ 143 और जोबनर से एनएस 63, 'एनएस 46, आरएफ 125 और आरएफ 101 को सीवीटी में अधिक मूल्यांकन करने के लिए आईईटी से आशाजनक प्रविष्टियों के रूप में पहचान की गई! जेबनर में सीवीटी की प्रविष्टियों में बाष्पशील तेल की मावा मे 1.60% से 2.47% तक अन्तर होता है! अधिकतम बाष्पशील तेल 2.47% एफएनएल 17 में देख लिया और एफएनएल 15 और एफएनएल 20 में 2.27% उसके बाद आता है जबिक न्यूनतम 1.60% एफएनएल 14 में देख लिया! बाष्पशील तेल की उपजता (41.36 लि. हेक्टर) में एफएनएल 15 प्रथम स्थान पर आते है और एफएनएल 16 (40.04 लि. हेक्टर), आर एफ 125 चेक (34.36 लि. हेक्टर), एफएनएल 17 (32.

93 लि हेक्टर) और एफएनएल 14 (28 52 लि हेक्टर) उसके बाद आते है। सबसे कम बाष्मशील तेल की माव्रा 20.07 लि हेक्टर एफएनएल 23 में अकित किया! प्रत्येक पौधे के पुष्प छत्न की संख्या, प्रत्येक पुष्प छत्न के पुष्पछित्रियों की संख्या, प्रत्येक पुष्पछित्री में धान की संख्या और प्रत्येक प्लॉट या प्रति हेक्टर में अजैविक नाइट्रोजन (100%) + अहाता खाद (5टन/हेक्टर) + अजोस्पिरिल्लम, अजैविक नाइट्रोजन (75%) + अजोस्पिरिल्लम + अहाता खाद (5टन/हेक्टर) और अजैविक नाइट्रोजन (50%) + अजोरिपिरिल्लम + अहाता खाद (5टन/हेक्टर) और अजैविक नाइट्रोजन (50%) + अजोरिपिरिल्लम + अहाता खाद (5टन/हेक्टर) को नियन्त्रण से तुलना करने पर अपेक्षतया उत्तम देख लिया।

मेथी

ए आई सी आर पी एस के केन्द्रों में मेथी की 967 जर्मप्लासम बनाये जाते हैं। सीवीटी प्रविष्टियों में जेएफ 270 में अधिकतम उपजता 573 कि. ग्राम/हेक्टर अकित किया जो कोयबतोर केन्द्र से प्राप्त आरएमटी 303 (543.33 कि. ग्राम/हेक्टर) से काफी दूर होता हैं। एफजीके 14 को धोली केन्द्र में 2.18 टन/हेक्टर उपजता के साथ आशाजनक पहचान की गई! हिसार से एचएम 348 और एचएम 355 को आई ई टी में आशाजनक रूप में पहचान की गई और उसे अतिरिक्त मूल्याकन के लिए समन्वित प्रजाती परीक्षण में शामिल किये जायेगे। मेथी के उपजो पर जैव उर्वरकों के प्रभाव के अध्यन के लिए किये उपवारों में अजैविक नाइद्रोजन (100%) + अजोरिपरिल्लम + अहाता खाद (5टन/हेक्टर) लगाने पर प्रत्येक पौधे से अधिकतम फली (71.73) और उपजता (0-98 कि ग्राम/4 5मीटर² या 2.18 टन/हेक्टर) प्राप्त हुए और अजैविक नाइद्रोजन (75%) + अजोस्पिरिल्लम + अहाता खाद 5टन/हेक्टर) प्राप्त हुए और अजैविक नाइद्रोजन (75%) + अजोस्पिरिल्लम + अहाता खाद 5टन/हेक्टर (टी2) जैसे 0 90 कि ग्राम/4 5मीटर² या 2 00टन/हेक्टर की उपजता उसके बाद आते हैं। जोबनर की प्रविष्टियों जे. एफजी 244 और एनएस 2006-3 को सूखा सहयता के रूप में पहचान की गई। मेथी में जैव नियामकों के प्रभाव पर किये अध्ययन से अधिकतम धान उपजता 595 कि. ग्राम/हेक्टर बुआई के 40 दिनों के बाद 1.0 मि लिटर/लिटर द्राइकोन्टानोल छिडकने से प्राप्त हो गये। रिजोबेक्टीरियल स्द्रैन एफएल 18 का बीज उपचार करने पर धोली में उपजता की वृद्धि और उपज की गुणवत्ता स्वभाव में भी प्रभावित हुई।

वर्ष 2007-08 में विभिन्न परियोजनाओं के अन्तर्गत प्राप्त प्रमुख उपलब्धियाँ इस रिपोर्ट में प्रस्तुत की जाती है।

एम. आनन्दराज

Project Coordinator's Report

The All India Coordinated Research Project on Spices (AICRPS) is vested with the mandate to conduct and coordinate research in 12 spice crops with its headquarter at Indian Institute of Spices Research, Calicut, AICRPS has at present 19 centres spread over 14 states based in 15 State Agricultural Universities (SAUs). In addition, 4 Voluntary Centres including Indian Cardamom Research Institute (Spices Board) are collaborating with this project. The proposed XI Plan budget of AICRPS is Rs. 1400 lakhs with Rs. 231.00 lakhs (ICAR share) during 2007-08. About 115 research programmes covering the mandate spice crops are being conducted at various centres.

Black pepper

Five hundred and eighty five accessions of black pepper germplasm consisting of cultivated, exotic, wild and related species are maintained under different AICRPS centres. The characterization of germplasm resulted in identification of high yielding accessions viz., Karimunda-II (5.60 kg green berry/vine and Valiyaramundi (3.45 kg green berry/vine) from Panniyur centre. Panniyur -1 (2.63 kg dry/vine) and PN-57 (4 kg dry/vine) were identified as high yielders from Sirsi and Yercaud centres respectively. Among the intervarietal hybrids developed at Panniyur centre, P-6 x P-5 was found to be promising with a fresh yield of 3.54 kg/vine. Among the different cultivars of pepper evaluated at Ambalavayal in CVT, Cul.5489 showed the highest spike length (13.34 cm) followed by Cul.5308 (12,46 cm) and Panniyur-1 (12.41 cm). At Panniyur centre maximum yield/vine was recorded in Cul.5489 (1.8 kg green berry/vine) and was on par with Karimunda OP, Cul.5308, Panniyur-1, Karimunda and Coll. 1041. Rooting of orthotropic shoot of black pepper cuttings at Dapoli centre indicated that two noded cuttings was superior to three and five noded cuttings. Integrated nutrient management treatment recorded maximum yield at Panniyur and Sirsi centres when compared to organic and inorganic treatments whereas, inorganic and integrated nutrient management treatments were found to be on par at Pechiparai centre. Among the current technologies available for foot rot management all the treatments were found to be significant in reducing the foot rot incidence at Pampadumpara centre. Spraying potassium phosphonate (0.3%) and application of Trichoderma harzianum @ 50 g/vine with 1 kg of neem cake was found to be the best treatment in controlling the disease at Chintapalle, Panniyur and Pampadumpara centres whereas, Bordeaux mixture (1%) spray and COC (0.3%) drenching was found to be effective at Mudigere centre. Among the biorationals evaluated, neem gold (0.5%) was found to be effective in the suppression of mussel scale (Lepidosaphes piperis) population and the least scale population was recorded on vines treated with dimethoate (0.05%).

Cardamom

Three hundred and five germplasm have been maintained by two (Pampadumpara and Mudigere) AICRPS centers. Under CVT, entries CL-722, PS-27, MCC-309 and MCC-246 were found promising for dry capsule yield (337.96 kg/ha) at Mudigere centre. Based on the yield trial, PS-27 and MHC-26 were identified as promising entries from Pampadumpara centre. The yield of cardamom treated with inorganic P alone or with P-solubilizer was significantly superior over other treatments. Panicle and clump infections due to capsule and rhizome rot diseases were found to be minimum in plots treated with T. harzianum and consortium of

bacteria @ 50 g/plant. The efficacy of four insecticides viz., phorate, fipronli, thiamethaxam and imidacioprid and three organic insecticides viz., neem cake, fish oil rosin soap and neem seed kernel extract were compared for the management of shoot fly in newly planted cardamom plantation and it was found that phorate, imidacloprid, thiamethaxam and neem cake were found superior in recording lowest number of dead hearts per clump compared to other chemical treatments. Significant reduction of cardamom root grub was observed in plots treated with combined application of imidacloprid (0.006%) and Heterorhabditis indica (100 IJ/grub).

Ginger

Ginger germplasm of 659 accessions have been maintained under various AICRPS centers. The CVT trial at Pottangi showed maximum yield in V_1E_4 -5 (29.21 t/ha) followed by V_2E_5 -2 (28.29 t/ha) with 32.29% and 28.12% higher yield over national check Suprabha. The genotypes viz. SG-27/04, SG-45/04, SG-827, SG-716, SG-682 and 51/04 were identified as high yielding and high quality lines. Pottangi centre has identified V1E8-2 as a promising high yielding low fibre ginger accession for release. The experimental results at various centers revealed that foliar spray of 0.05% zinc sulphate (60 and 90 DAP), 0.2% of borax (60 and 90 DAP) and 1.0% of ferrous sulphate (60 and 90 DAP) increased the yield and quality parameters. Study on rhizome rot of ginger at Kumarganj revealed that seed treatment of ginger rhizome in hot water at 51°C for 30 minutes and Trichoderma harzianum for 30 minutes mixed with neem cake is effective in reducing the disease incidence (24%).

Turmeric

One thousand three hundred and twelve turmeric germplasm accessions have been maintained by eight centers under AICRPS. Out of the 265 germplasm accessions screened for resistance against leaf spot and leaf blotch diseases at Coimbatore centre, accessions viz., CL-1, 2, 3, 6, 14, 22, 25, 31, 32, 33, 53, 54, 148, 153, 230 were resistant to leaf spot (8 to 10 PDI) and for the leaf blotch, the accessions viz., CL-8, 9, 139, 153, 160 and 161 were resistant (10 PDI). Survey for disease incidence indicated that three major diseases namely, leaf blotch caused by Taphrina spp., leaf spot caused by Colletotrichum spp. and rhizome rot were prevalent in 2 blocks of Coochbehar and one block of Dinhata of Coochbehar District. At Pottangi, PTS-15 has recorded more fresh rhizome yield (25.0 t/ha) followed by IT-1 (24.2 t/ha) in comparison to Duggirala Red check variety (25.5 t/ha) in CVT. Curcumin content in the germplasm accessions ranged from 3.0 to 3.5% at Coimbatore. The highest curcumin content of 3.5 per cent was recorded by the accession CL-57. Oleoresin content varied from 8.5 to 12.5% and the highest oleoresin content was recorded by CL-219 (12.5%), The essential oil content varied from 2.0 to 4.5% among the accessions. The highest essential oil content (4.5%) was recorded in CL-20. Pottangi centre has identified PTS-43, as a promising high yielding, high curcumin accession for release. Integrated nutrient application recorded highest rhizome yield (24.8 t/ha) followed by inorganic (22.9 t/ha) whereas, organic treatment recorded 21.2 t/ha in the trial on organic farming in turmeric at Jagatial center. Soil application of FYM (30 t/ha) - vermicompost (20 a/ha) + neem oil cake (8 a/ha) produced maximum plant height (126.67 (m), number of tillers per plant (5.40), number of leaves per tillers (14.60) and yield per plot (15.20 kg/3m²) or yield (50.67 t/ha) followed by soil application of FYM (30 t/ha) \div vermicompost (15 q/ha) + neem oil cake (8 q/na) at Dholi center.

Tree spices

A total of 38 clove, 119 nutmeg, 39 cinnamon and 10 cassia germplasm have been maintained under three AlCRPS centres. Characterization of cinnamon germplasm at Pechiparai led to the identification of Sel.65 with a bark yield of 469 g of dried bark/tree and leaf yield of 6.3 kg/tree A local collection from Pechiparai was also identified for high leaf yield of 6.2 kg/tree and bark yield of 464.5 g/tree.

Coriander

One thousand nine hundred and eleven germplasm of coriander have been conserved at various AICRPS centres for further evaluation and characterization. Two entries viz. DH-220 and DH-233 were identified as high yielders in IET at Hisar and would be included in coordinated varietal trial for further evaluation. The CVT trials at Coimbatore identified LCC-170 and UD-206 as high yielders with an yield of 928 kg/ha and 923 kg/ha respectively. Three entries, COR-5 [1913 kg/ha] COR-4 (1825 kg/ha) and COR-2 (1670 kg/ha) were identified as high yielders from Hisar during the year. LCC-244 (18.9 t/ha), LCC-233 (18.5 t/ha) and LCC-234 (18.0 t/ha) were identified as good leafy types at Coimbatore center. COR-4, COR-10, COR-11, COR-12, COR-13, COR-14 and COR-15 were identified as early maturing types from Dholi center. At Kumarganj, COR-9 (19.90 a/ha) and COR-8 (19.37 a/na) were identified as high yielders. Studies on the effect of bioregulators on coriander at Jobner recommends two foliar sprays of 50 ppm NAA or 1.0 ml/l triacontanol at 40 and 60 DAS for obtaining higher seed yield as well as net returns from coriander crop. Among the fifty high yielding genotypes evaluated for drought tolerance at Colmbatore, the genotype CS-127 was found to be promising. Seed treatment with Pseudomonas fluorescens (IISR-6) at the rate of 10 g/kg of seed followed by foliar application at 108 cfu on 60 days after sowing was found to be effective in reducing the powdery mildew intensity in coriander. Seed treatment and soil application of rhizobacterial strain FL-18 gave an yield of 1779 kg/ha in coriander followed by the application of Trichoderma MTCC-5179 (1611 kg/ha).

Cumin

Jobner and Jagudan centres hold 526 accessions of cumin germplasm. Out of ten entries in IET tested against wilt, blight and powdery mildew, UC-331 and UC-225 was identified as resistant entries against wilt, blight and powdery mildew at Jobner. In an experiment to study the effect of rhizobacteria on growth and vield of cumin at Jagudan, it was observed that application of rhizobacteria was not effective in promoting growth and yield significantly. Spraying mancozeb @ 0.25% at 40, 50, 60 and 70 DAS was found to be effective in controlling blight. Soil solarization — soil application of Trichoderma harzianum + spraying mancozeb @ 0.25% at 60 DAS and application of vermicompost + soil application of Trichoderma harzianum + spraying mancozeb @ 0.25% at 60 DAS were also effective for controlling the disease.

Fennel

Six hundred and twenty five accessions are conserved in different centres under AlCRPS. HF-131 and HF-143 from Hisar and NS-63, NS-46, RF-125 and RF-101 from Jobner were identified as promising entries from IET for further evaluation in CVT. The volatile oil content in the entries of CVT at Jobner ranged from 1.60% to 2.47%. The maximum volatile oil of 2.47% was observed in FNL-17 followed by 2.27% in FNL-15 and FNL-20, while, minimum of 1.60% in FNL-14. FNL-15 recorded an yield of 41.36 l/ha followed by FNL-16 (40.04 l/ha), RF-125 check (34.36 l/ha), FNL-17 (32.93 l/ha) and FNL-14 (28.52 l/ha). Application of inorganic nitrogen (100%) + FYM 5 t/ha + Azospirillum, inorganic nitrogen (75%) + Azospirillum + FYM 5t/ha, inorganic nitrogen (50%) + Azospirillum + FYM 5t/ha were found significantly superior as compared to control regarding number of umbels per plant, number of umbellet per umbel, number of grains per umbellet and grain yield.

Fenugreek

AICRPS centres maintain 978 germplasm accessions of fenugreek. Among CVT entries, JF-270 recorded the highest yield of 573 kg/ha, which was on par with Rmt-303 (543 kg/ha) from Coimbatore centre. FGK-14 was identified promising from Dholi centre with an yield of 2.2 t/ha. HM-348 and HM-355 were identified as promising in IET from Hisar and would be included in coordinated varietal trial for further evaluation. Among the treatments to study the effect of biofertilizers on yield of fenugreek, inorganic nitrogen 100% — Azospirillum

+ 5t/ha FYM gave the maximum number of pods per plant (72) and yield (0.98 kg/4.5 m2 or 2.18 t/ha) followed by inorganic nitrogen 75% + Azospirillum + 5 t/ha FYM (yield 0.90 kg/4.5 m2 or 2.00 t/ha). Entries J Fg -244 and NS-2006-3 were identified as drought tolerant at Jobner Studies on the effect of bioregulators in fenugreek indicated that highest grain yield of 595 kg/ha was obtained by spraying of tricontanol 1.0 ml/l at 40 days of sowing. Treatment of seed with rhizobacterial strain FL-18 was effective in increasing yield and yield attributing characters in fenugreek at Dohli centre

The salient findings during 2007-08, under different projects are presented in this report

M. Anandaraj

1. Black Pepper

1.1 Genetic Resources and Crop Improvement

1.1.1 Germplasm collection, characterization, evaluation and conservation (Chintapalle, Dapoli, Panniyur, Pundibari, Sirsi, Yercaud)

Among the 22 accessions evaluated at Chintapalle centre, Vellanamban recorded the highest dry yield of 2.5 kg per vine followed by Neelamundi (2.14 kg/vine). The black pepper germplasm maintained at different AICRPS centres are given in Table 1.

The black pepper germplasm consisting of 85 accessions have been maintained at Dapoli centre and are being evaluated for various morphological and yield characters.

Two hundred and eighty nine accessions of black pepper, which consists of 214 cultivated, 72 wild and related species and 3 exotic types are being maintained at Panniyur center. During the year 2007-08, Karimunda-II recorded maximum green berry yield of 5.60 kg/vine followed by Valiyaramundi (3.45 kg/vine) and TMB-IV (1.80 kg/vine). The number of spikes was maximum for Karimunda-II (2532) followed by Valiyaramundi (1576). The spike length was maximum for Valii (11 cm) and number of berries/spike were more for Valiyaramundi (22 cm). Hundred-berry weight was higher for Moozhiyar and Vally (18 g) when compared to other accessions.

During the year, three new genotypes from Terai zone of West Bengal were added to the germplasm accessions maintained at Pundibari center making a total of 19 accessions.

At present 121 germplasm collections are maintained at Sirsi centre. All the collections are susceptible to *Phytophthora* foot rot disease. Among the six promising accessions Panniyur-1 recorded maximum dry yield of 2.63 kg/vine followed by Kudragutta (2.05 kg/vine).

Among the 137 germplasm accessions evaluated at Yercaud, berry set was observed in sixty three accessions. Accession PN-57 recorded 12.0 kg green berry/vine. PN-33 recorded the highest value for spike length (12.4 cm) and number of berries/spike (68).

Table 1. Black pepper germplasm collections under AICRPS centres

	In	digenous	Exotic	Total
Centre	Cultivated	Wild and related sp.		
Chintapalle	58	-	-	58
Dapoli	79	6	-	85
Panniyur,	214	72	3	289
Pechiparai	12	1		13
Pundibari	16	3	*	19
Sirsi	120		1	121
Total	499	82	4	585

12 Hybridization Trial

1 2 1 Intervarietal hybridization to evolve high yielding varieties (Panniyur)

Intervarietal hybridization is being carried out every year at Panniyur centre and the hybrids obtained are being planted and evaluated. Among the intervarietal hybrids, P-6 x P-5 was found to be promising with a fresh yield of 3.54 kg/vine.

1 3 Coordinated Varietal Trial (CVT)

1 3 1 CVT 1991 Series IV (Yercaud)

Among the 14 accessions evaluated at Yercaud, Panniyur-3 performed well with a maximum mean yield of 12 0 kg of green berry/vine (3 6 kg dry berry/vine) and hundred-berry weight of 12 4 g. The increased yield in Panniyur-3 is perhaps due to long spike length and spike intensity

1 3 2 CVT 2000 Series V

(Ambalavayal, Chintapalle, Pampadumpara, Panniyur, Sirsi)

Among the thirteen cultivars of pepper evaluated at Ambalavayal centre, Panniyur-1 recorded the highest fresh weight of 6 69 kg berries/vine and maximum dry weight of 0 717 kg berries/standard Cul 5308 recorded maximum number of spikes/standard (367 36) followed by Karimunda-OP (327 15) and Panniyur-1 (289 83) The longest spike was registed in Cul 5489 (13 34 cm) followed by Cul 5308 (12 46 cm) and Panniyur-1 (12 41 cm) and lowest spike length was recorded in PRS-22 (6 63 cm) Among the thirteen cultivars, HP-1411 recorded the highest number of berries/spike (71 66) followed by Panniyur-1 (63 25) and Cul 5308 (61 04)

Among 12 varieties, early spiking was observed in Cul 5489 and Coll 1041 at Chintapalle centre Coll 1041 recorded highest plant height (2 46 m) followed by HP-34 (2 03 m) whereas, Karimunda-OP recorded the lowest plant height (0 86 m)

In general, the yield performance was very low at Pampadumpara centre. Cul 5308 registered the highest yield (575 g/plant) and all the accessions except Cul 5308 (575 g/plant) and Coll 1044 (110 g/plant) recorded less than 100 g of dry berry yield per plant. Minimum dry weight per plant was recorded in OPKM (12 62 g), HP-813 (15 41g) and HP-34 (38 61g). Maximum spike length was observed in Panniyur-1 (16 4 cm) followed by OPKM (15 1 cm). Number of berries per spike ranged from 4 2 in OPKM to 58 8 in Cul 5308. Out of 12 accessions studied, Cul 5308 as well as Coll 1041 registered highest yield mainly due to maximum spike length and more number of berries per spike although its hundred-berry volume as well as weight was very low. Black pepper accessions, HP-1411, HP-105, PRS-21 and PRS-22 were found to be tolerant to pollu disease and Panniyur-1 was highly susceptible.

At Panniyur centre maximum yield/vine was recorded in Cul 5489 (1 847 kg green berry/vine) and was on par with Karimunda OP, Cul 5308, Panniyur-1, Karimunda and Coll 1041 (Table 2) The number of spikes/vine was maximum in Coll 1041 followed by Karimunda There was no significant difference between cultures for number of spikes. The maximum spike length was recorded in Cul 5489 (12 cm) and this was significantly superior to all other entries except Panniyur-1 (10 7 cm). The number of berries/spike was more for Cul 5489 and Coll 1041 (35 berries/spike) and was significantly superior to all other genotypes.

Table 2. Performance of CVT 2000 black pepper genotypes at Panniyur

Genotype	Yield (green berry kg/vine)	No. of spikes /vine	Spike length (cm)	No. of berries /spike	Weight of 100 berry (g)	Dry recovery (%)
Kalluvally-IV	1.020	316	8.0	16.7	13.00	39
Karımunda-II	0 343	155	7.3	16.7	11.00	36
Karimunaa-III	0.587	254	97	18.0	12 00	39
Cul 5308	1.507	413	9.0	26.0	13.00	38
Cul 5489	1.847	455	120	34.7	14.00	41
HP-34	0.930	278	6.7	21 3	14.00	40
HP-105	0.750	274	7.7	20.0	12.00	35
HP-813	0,633	314	9.3	20.0	11.00	41
HP-1411	0.960	297	8 7	35.0	11.00	39
Karimunda OP	1.747	421	93	20.3	14.00	41
Coll.1041	1.263	537	7.0	21.3	12.00	35
Panniyur-1	1.327	365	107	25.3	14.00	. 43
Karimunda	1.373	510	7.3	19.0	12.00	41
CD (P=0.05)	0.584	NS	2.1	3.6	NS.	
CV (%)	32.000	37	14.0	20.0	14.00	
SE	0.200	75	0.7	2.5	0.99	

Fourteen entries were evaluated at Sirsi. The height of the plant was maximum in HP-05 (3.45m) followed by OP Karimunda (3.40 m). Spiking was initiated in entries *viz.* HP-34, HP-105, OP Karimunda, HP-813, HP-1411, PRS-22, and Panniyur-1.

1.3.3. CVT 2006

(Chintapalle, Dapoli, Pampadumpara, Panniyur, Pechiparai Pundibari, Sirsi, Yercaud)

Multiplication of the planting materials of 8 genotypes of black pepper namely, PRS- 67, HB-20052, Acc.33, Acc.53, Acc.57, Acc.106, C-1090, HP-39 is under progress to initiate the experiment during the ensuing season at Chintapalle, Dapoli, Pampadumpara, Panniyur, Pechiparai, Pundibari, Sirsi and Yercaud centres.

1.4 Nutrient Management Trial

1.4.1 Development of organic package for spice based cropping systems (Chintapalle, Dapoll, Sirsi, Panniyur)

The trial was laid out in 2006 at Chintapalle centre and the vines are in the vegetative phase. The growth of vines was satisfactory at Dapoli and the organic and inorganic package recorded a mean vine length of 0.45 m and 0.30 m respectively during the first year. At Sirsi, the vines treated with recommended package of practices recorded higher dry berry yield (1.03 kg/vine) compared to those with only organics (0.82 kg/vine).

1 4 2 Organic farming in black pepper -2006

(Dapoli, Panniyur, Pechiparai, Sirsi, Yercaud)

At Panniyur, the integrated management treatment recorded the maximum green berry yield of 3 684 kg/vine followed by inorganic treatment (2 389 kg/vine). Integrated treatment was significantly superior to other two treatments. The number of spikes/vine was also maximum for integrated treatment (704) and this was significantly superior to other two treatments (Table 3).

Treatments were imposed in an established peoper garden at Pechiparal centre. The highest yield of 3 86 kg/vine was recorded in the inorganic treatment and it was on par with the integrated treatment, which recorded an yield of 3 58 kg/vine.

The plant growth was satisfactory under various treatments at Sirsi. Among three treatments, the maximum dry berry yield (1 03 kg/vine) was recorded in the vines treated with integrated inputs as compared to those with only inorganics (0 99 kg/vine) and organics (0 96 kg/vine).

Highest yield of 12 0 kg and 3 48 kg of green and dry berry yield was recorded in FYM 10 kg + Azospirillum 50 g + Phosphobacteria 50 g + VAM 200 g at Yercaud centre

The experiment would be initiated during 2008-09 at Dapoli as the available *Erythrina* standards were damaged by gall fly infestations

Table 3 Yield of black pepper under organic farming at Panniyur

Treatment	Yield (green berry kg/vine)	No of spikes /vine	Spike length (cm)	Berries /spike	Dry recovery (%)
Organic	2 252	505	10	39	45
Integrated	3 684	704	12	45	46
Inorganic	2 389	529	10	40	44
CD (P=0 05)	0 519	74	NS	NS	
CV %	35 000	24			
SE	0 367	53			

1 4 3 Effect of micronutrients on black pepper (Adaptive trial) (Panniyur)

The experiment was started as observational trial during 2007 at Panniyur centre. Vines showing yellowing/deficiency symptoms were selected and Zn $So_2@30$ g/vine was applied. The stand of the crop is satisfactory without any yellowing.

1 4 4 Rooting of orthotropic shoots of black pepper (Dapoli, Panniyur, Pechiparai, Sirsi, Yercaud)

A trial on rooting of orthotropic shoots of black pepper cuttings var Panniyur-1 with 72 treatment combinations was laid out at Dapoli centre. Rooting per cent was highest (28.89) in two noded cutting and

was found to be significantly superior to three and five noded cuttings. Among the rooting media, sand and said SYM were found to be at par and were significantly superior to coir pith. Polybag humid chamber was significantly superior to poly shade for rooting. The interaction effect was not significant.

The experiment was started as observational trial during 2007 at Panniyur centre. The trials would be conducted during 2008 in other centres.

1 5 Disease Management Trial

1 5 1 Adaptive trial on management of *Phytophthora* foot rot of black pepper in farmers' field (*Chintapalle, Dapoli, Mudigere, Panniyur, Pampadumpara, Sirsi*)

The current foot rot management technologies available in the packages of practices of Kerala Agricultural University and All India Coordinated Research Projects on Spices (AICRPS) were compared with the local practices followed by farmers. The observations on management of *Phytophthora* foot rot disease in black pepper at Chintapalle centre revealed that less foliar yellowing (8 53%), less defoliation (10 15%), less death of vines (2 38%) and highest green berry yield of 2 980 kg per vine was recorded when vines were treated before onset of monsoon (May), during rainy season (June-July) and during 2nd fortnight of August with potassium phosphonate (0 3%) as spray (2 I/vine) and application of *Trichoderma harzianum* 50 g per vine with 1 kg of neem cake to the root zone.

At Dapoli, the treatments were imposed during pre and post monsoon periods in farmers' field. Foot rot incidence, leaf infections, foliar yellowing, defoliation and collar infections were not observed in any of the treatments. The difference in mean dry berry yield recorded under various treatments was non-significant.

Minimum foliage infection (7%) was recorded in 1% BM spray and 0.3% COC drench (T_2) which was followed by 0.3% potassium phosphonate + T harzianum application (T_1) as compared to control (farmers' practice) at Mudigere centre. Fifty per cent reduction in leaf yellowing and defoliation was noticed in T_1 , and T_2 as compared to farmers' practice (21% yellowing and more than 50% defoliation). Higher canopy size of 3.72 m and yield of 413.75 g/vine was recorded in T_1 as compared to farmers' practice (356.25 g/vine).

Potassium phosphonate + *Trichoderma* application gave less incidence of defoliation and was more effective in controlling the disease at Panniyur centre. There was no significant difference between treatments for yield and plant growth data.

All the treatments were found to be significant in reducing the foot rot incidence at Pampadumpara. The disease index ranged from 3.1 in potassium phosphonate (0.3%) - T harzianum (@ 50 g/vine) treated vines to 10.1 on vines adopted by local practice of farmers. The plots treated with potassium phosphonate @ 0.3% and T harzianum @ 50 g/vine was found to be effective. In managing foot rot incidence in black pepper followed by Bordeaux mixture 1% spray and COC 0.2% drench (Table 4)

At Sirsi, it was observed that black pepper vines were least infected with *Phytophthora* foot rot of black pepper where the vines were protected with potassium phosphonate (@ 0 3% as spray @ 2 l/vine) and drenching (@ 3 l/vine) and soil application of *T harzianum* @ 50 g per vine with one kg of neem cake to the root zone during pre monsoon and peak monsoon

Table 4. Management of Phytophthora foot rot of black pepper at Pampadumpara

Treatment	Disease index
Potassium phosphonate (0.3%) + Trichoderma harzianum (50 g/vine)	3.1
Bordeaux mixture (1% spray)+ COC (0.2% drench)	6.9
Farmers' practice (Bordeaux mixture 1% spray and drench)	10.1
CD (P=0.05)	0.6

1.5.2 Trial on management of *Phytophthora* foot rot of black pepper in existing plantation (*Chintapalle, Dapoli, Mudigere, Pampadumpara, Panniyur, Sirsi*)

The observations on management of *Phytophthora* foot rot disease in black pepper at Chintapalle centre revealed less foliar yellowing (13.52%), less defoliation (15.28%), less death of vines (4.72%) and highest green berry yield of 2.46 kg per vine when vines were treated before onset of monsoon (May), during rainy season (June-July) and during 2nd fortnight of August with potassium phosphonate (0 3%) as spraying (2 I/vine) and drenching of *T. harzianum* 50 g/vine with 1 kg of neem cake to the root zone.

Management of *Phytophthora* foot rot of black pepper in coconut cropping system was conducted during 2007-08 at Dapoli center. First application of treatments was done during onset of monsoon (June) and again during third week of August. Disease incidence of *Phytophthora* foot rot of black pepper was not observed during this season. During the first year there was no significant difference between treatment means for disease incidence and dry berry yield (kg/ha). The dry berry yield ranged between 0.880 and 0.960 kg/ha among the treatments.

At Mudigere centre, all the treatments were effective in reducing the disease incidence as compared to control (Table 5). The maximum reduction in leaf yellowing (7.5%), defoliation (3.25%) and death of vines (1.50%) was recorded in T_2 (1% Bordeaux mixture spray and 0.2% COC drench). With respect to canopy size, the maximum diameter of 2.85 m was recorded in the application of bacterial consortium as compared to control (2.2 m) and maximum yield of 452.5 g/vine was recorded in T_2

The treatments were imposed during pre and post monsoon periods at Pampadumpara centre. The efficacy of biocontrol agents and fungicides were compared on the management of foot rot disease of black pepper. Minimum disease incidence was recorded in the plots treated with *T. harzianum* and consortium of bacteria @ 50 g/vine followed by application of potassium phosphonate @ 0.3% and *T. harzianum* @ 50 g/vine. The disease index ranged from 3.19 to 11.3. Combined application of *T. harzianum* and consortium of bacteria was found to be synergistic than application of consortium of bacteria alone in suppressing the *Phytophthora* foot rot disease of black pepper.

The trial was started during 2006 June at Panniyur centre. There was no significant difference between treatments for disease incidence and yield. The control plot showed more yellowing, defoliation and death of vine.

At Sirsi, *Phytophthora* foot rot of black pepper grown under arecanut cropping system was managed by application of vines with potassium phosphonate (@ 0.3 per cent as spray @ 2 l/vine and drench 3 l/vine) and bloagent *T. harzianum* (50 g with one kg of neem cake as soil application) during first week of June and

third week of August 2007 to the root zone. However, bioagent application to vines as spray and drench with consortium of bacteria along with T harzianum (50 g/vine) as soil application, with one kg of neem cake was effective in regulating the disease. In case of unprotected black pepper vine, disease was severe with respect to maximum leaf infection (54 55 PDI), maximum leaf yellowing (32 14 PDI), maximum defoliation (30 95 PDI), highest death of vines (35 70 per cent) and least green berry yield (0 36 kg/vine and 144 80 kg/ha projected yield) (Table 6)

Table 5 Effect of biocontrol agent and chemicals on the incidence of foot rot disease in black pepper at Mudigere

Trec	itment	Leaf yellowing (%)	Defoliation (%)	Death of vines (%)	Canopy size (m)	Yield/vine (g)
I,	Potassium phosphonate (0 3%)+Trichoderma harzianum	8 75	5 00	2 25	2 73	388 75
T ₂	Bordeaux mixture spray (1%) COC (0 2%) drench	7 50	3 25	1 50	2 83	452 50
T ₃	Consortium of bacteria	11 75	6 00	2 00	2 85	381 25
T ₄	Consortium of bacteria + T harzianum	11 00	7 25	1 50	2 68	334 00
T ₅	Control	15 00	12 00	2 50	2 20	322 50
	CV%	21 13	23 16	29 61	13 52	9 94
	CD (P=0 05)	3 51	2 39	0 89	0 55	57 56

Table 6 Management of Phytophthora foot rot disease in black pepper at Sirsi (Existing plantations)

Tred	atment	Leaf infection (PDI)	Yellowing (PDI)	Defolia- tion(PDI)	Death of vines (%)	Green berry yield (kg/ vine)
Τ,	Potassium phosphonate (0 3%) Trichoderma harzianum	13 09	9 52	10 71	7 14	0 83
T_2	Bordeaux mixture (1%) - Copper oxychloride (0 1 % a i)	14 28	15 47	15 47	10 71	0 69
T ₃	Consortium of bacteria	21 42	20 23	25 00	21 43	0 54
T ₄	Trichoderma harzianum consortium of bacteria	17 85	16 66	15 48	14 28	0 63
T ₅	Control	54 55	32 14	30 95	35 70	0 36
	SEm ±	3 23	2 33	3 09	611	0 04
	CD (P=0 05)	9 94	0 18	9 52	18 84	011

^{*32} per cont ary recovery

1 5 3 Trial on management of *Phytophthora* foot rot of black pepper in new plantation (Chintapalle, Dapoli, Mudigere, Pampadumpara, Panniyur, Pechiparai, Sirsi)

The trial was initiated at Chintapalle, Panniyur, Pampadumpara, Sirsi and Mudigere during 2006 in split plot design. Three varieties of black pepper namely, IISR-Sakthi, IISR-Thevam and Panniyur-1 were planted for evolving a management strategy for foot rot disease. The treatments were imposed during pre and post monsoon periods.

Among the varieties Panniyur-1 recorded maximum disease incidence at Pampadumpara centre. The disease index for Panniyur-1 ranged from 6 24 to 22 50 and for IISR-Shakthi from 3 96 to 14 23 and for IISR-Thevam from 3 25 to 15 23 (Table 7). Combined application of *T harzianum* and consortium of bacteria was found to be synergistic than application of consortium of bacteria alone in suppressing the *Phytophthora* foot rot disease.

At Pechiparai and Sirsi planting materials of black pepper were put for further multiplication by serpentine method to produce sufficient cuttings for each treatment along with check variety Panniyur-1 in nursery

Table 7. Management of Phytophthora foot rot of black pepper in new plantation at Pampadumpara

Treatment	Disease index					
il danielii	Panniyur-1	IISR-Shakthi	IISR-Thevam			
Potassium phosphonate (0 3%) + Trichoderma harzianum (50 g/vine)	10 12	6 23	7 42			
Bordeaux mixture (1% spray) COC (0 2 % drench)	12 23	8 34	9 24			
Consortium of bacteria (50 g/vine)	10 42	4 24	5 44			
Trichoderma harzianum + Consortium of bacteria (50 g/vine)	6 24	3 96	3 25			
Control	22 56	14 23	15 23			
CD (P=0 05)	0 43	0 34	0 57			

1 6 Pest Management Trial

1 6 1 Management of scale insects in black pepper with organic products (Mudigere, Pampadumpara)

The efficacy of insecticides was evaluated at Mudigere during 2007. The treatments with three organic insecticides viz, neem oil, econeem and fish oil rosin soap were compared with monocrotophos and an untreated control. In the pretreatment mussel scale population ranged from 6.99 to 8.05 on leaves and 54.95 to 70.25 on twigs. The population of mussel scales was lowest with fish oil (2.97and 16.02) treatment followed by neem oil (3.50 and 15.80) (Table 8).

At Pampadumpara, the experiment was conducted in a farmer's field at Kattapana (20 acre) during February to March 2008. There were six treatments including control, three belonging to the group of biorationals and two insecticides. Observation on mussel scale population was recorded after second and fourth spray on vines treated with biorationals and that after first and second spray on insecticide-treated vines. Numbers of live scale insects were recorded in 1 cm² leaf area and 2.5 cm twig and are presented in Table 9.

The population of mussel scale, *Lepidosaphes piperis* on black pepper was found to be 39 5 per cm² on leaf and 52 7 per 2 5 cm twig, respectively as a pre-treatment count. All treatments belonging to insecticide group as well as biorationals reduced the scale population on both leaves as well as twigs, significantly. The

scale population reduced from 37.3 to 11 2 on dimethoate-treated plants after the first spray on leaves. Scale population on vines treated with fish oil (23 5) and neem oil (23.1) were found at par. After the second/fourth spray, population of scale insects was reduced to 3 2 on dimethoate-treated vines followed by vines treated with thiamethoxam (8 1). Among the biorationals evaluated, neem gold (0.5%) was found to be more effective than neem oil and fish oil in reducing scale population on leaves.

A similar trend was also observed in mussel scale population on twig. The population reduced from 51.9 to 11.9 in dimethoate-treated vines after the first spray. Scale population on neem oil (30.0) and fish oil-treated vines (30.4) were found to be non-significant and inferior compared to that of vines treated with thiamethoxam (18.0) and neem gold (22.9). After second/fourth spray, vines treated with dimethoate resulted in least population of scale insects (4.4) followed by thiamethoxam-treated vines (9.4). Among the biorationals evaluated, neem gold (0.5%) was found to be effective in the suppression of scale population and the least scale population was recorded on vines treated with dimethoate (0.05%)

Table 8. Management of pepper mussel scale with organic products at Mudigere.

Treatment	Dosage	Mean number of population per leaf or twig at different days interval									
	%	Pretre	atment	3	30	60	0	9	0	Me	an
		Leaf	Twig	Leaf	Twig	Leaf	Twig	Leaf	Twig	Leaf	Twig
Neem oil	0.5	8.05	59 83	2.10	17 05	2.20	14.50	6 20	15.85	3 50	15.80
Eco-neem	05	7 49	54.95	5.30	49 05	5.15	33 10	8.00	27 90	6.15	36.68
Fish oil	0.3	7.66	64.50	2.45	16 95	2 00	17.90	4.45	13.20	2 97	16.02
Monocrot- ophos	0.05	6.99	70.25	1.05	37 90	1.75	12 15	2.90	9.80	1.90	19.95
Control	-	7.53	55.60	9.15	79.80	7.05	43.25	12.10	32.15	9.43	51.73
CD (P≈0.05)		1.76	17.20	1.57	30.55	0.78	5.65	2.72	4 29		

Table 9. Effect of organic products on scale insects of black pepper at Pampadumpara

	Scale population							
		Leaf		Twig				
Treatment	Initial count per cm2	I* /II# spray	II* / IV# spray	Initial count per 2.5 cm	l* /II# spray	II* / IV# spray		
Neem oil (0.5%)#	39 0(8.09)	23.1(6 58)	13 0(5.32)	52.2(9.07)	30.0(7.39)	19.3(6.15)		
Neem Gold (0.5%)#	39.5(8 15)	17.9(5 97)	10 1(4 83)	52.5(9.07)	22.9(6 35)	12 0(5.16)		
Fosco (3%)#	38.3(8.05)	23.5(6.61)	13.7(5 39)	51.7(9.04)	30.4(7.42)	19.5(6.18)		
Thiamethoxam (0 013%)*	38 3(8.22)	15.2(5.61)	8.1(4.45)	52 7(9.11)	18 0(6.00)	9.4(4.70)		
Dimethoate (0 05%)*	37 3(7.72)	11 2(5.00)	3.2(3.29)	51.9(9.05)	11.9(5 32)	4.4(3.47)		
Control	39 5(8.22)	35.5(7.77)	33.5(7.59)	52 5(9 09)	50 7(8 77)	48 7(7 43)		
CD (P=0.05)	NS	019	0.42	NS	0 15	0.23		

Values in parentneses are sauare roof transformed

2. Cardamom

2.1. Genetic Resources

2.1.1 Germplasm collection, characterization, evaluation and conservation (*Mudigere, Pampadumpara*)

A total of 152 germplasm were maintained at Mudigere centre. Out of 32 cardamom germplasm evaluated for yield and its attributing traits during 2007, D-141 was the tallest (290 cm). Pothamedu was found superior for number of bearing suckers (14), and panicle number (22). Longest panicle length was observed in Pothamedu and PDP-7. Pothamedu recorded high green capsule yield (198 kg/ha) followed by D-141 and Cl-730. The cardamom germplasm maintained at different AICRPS centres are given in Table 10.

At Pampadumpara, IC numbers (547920 to 547992) were obtained for 73 cardamom accessions (CRSP 1-73) from National Bureau of Plant Genetic Resources, New Delhi. Yield (fresh and dry) of top ten germplasm accessions were recorded during 2007-08. The highest fresh yield of capsules (7807 g/plant) and dry yield (1695 g/plant) of capsules was recorded in S-1 followed by CR-9 with 7243 g/plant and 1425 g/plant of fresh and dry yield, respectively. CR-9 recorded maximum 100 capsule volume (239.2) and weight (108.7g) followed by PS-44 (225.4 and 106.1g). Five accessions namely, PS-1 (24.4), PS-44 (22), PS-7 (21.8), Sam-10 and NS-50 (21) registered more than 20 seeds per capsule. CR-9 registered very minimum number of seeds per capsule (18.8). Driage percentage of PS-44 was found to be highest (22.5%) confirming its superiority in recovery percentage. PS-44 was also found to be tolerant to azhukal disease (2.86%). Thrips infestation was low in NS-50 (3.54%) and high in S-1 (9.43%). CR-9 was found to be highly susceptible to azhukal disease (21.0%) whereas least capsule borer damage was recorded in the same accession.

Table 10. Cardamom germplasm collections of AICRPS centres

Centre	Indig	Total		
	Cultivated	Wild and related sp.		
Mudigere	152	-	152	
Pampadumpara	152	1	153	
Total	304	1	305	

2.2 Hybridization and Selection

2.2.1 Evaluation of OP progenies under intensive management (*Mudigere*)

Thirty open pollinated progenies, planted in Mudigere centre during 2002-03, were evaluated. The progeny $23C_{\rm g}$ yielded highest (215.10 kg/ha) followed by $22C_{\rm g}$ (212.50 kg/ha) and $21C_{\rm g}$ (210.21). M-2 was tallest (315.33 cm), $22C_{\rm g}$ and $23C_{\rm g}$ had maximum number of bearing suckers (13.33 and 13.66), $6C_{\rm g}$ had longest panicle

(68.74 cm) and number of capsules/plant (62.00) was maximum in $4C_8$. A crossing block involving 5 elite clones M-1, M-2, HS-1, Njallani Gold and CL-726 was established at a closer spacing of 6 x 3' during 2005-06 at Muaigere centre in order to generate all possible cross pollinations through both random open pollination and hand pollination. All the clones were good general combiners and belong to Malabar type, while Njallani green gold is a Vazuka type.

2.2.2 CVT 2000-Series IV (Mudigere, Sakleshpur)

A CVT comprising of 12 cardamom clones planted in 2001-02 was evaluated at Mudigere centre. Three clones were found superior for dry capsule yield and were significantly superior over check (M-2), MHC-10 yielded highest (337 kg/ha) followed by S-1 (289.80 kg/ha) and CL-692 (274.40 kg/ha). Number of bearing suckers (18.10), panicle number (42.01) and number of capsules (51.4) was maximum in MHC-10. Entry S-1 had longest panicle (54.10 cm) (Table 11).

Plant height was significantly more in PS-44 (277 cm) followed by MHC-10 (246 cm) at Sakleshpur centre. Bearing tillers and panicies were significantly more in SKP-170 followed by MHC-10. Yield was significantly more in SKP-170 (785 kg/ha) followed by SKP-165 (625 kg/ha) and in MHC-10 (607 kg/ha) (Table 12). Maximum percentage of bold capsules (capsules retained in 8 mm sieve) was found in CL-692 (51.6%) followed by ICRI-3 (50.9%).

Table 11. Performance of cardamom clones in CVT- 2000 at Mudigere

Clone	Plant height (cm)	Suckers /plant	Bearing suckers /plant	Panicles /plant	Panicle length (cm)	Capsules /panicle	Internodes /panicle	Dry capsule yield (kg/ha)
MHC-10	288.42	38.01	18.10	42.01	52.80	51.40	18.90	337.00
S-1	302.00	26.01	13.02	40.02	54.10	47.04	18.01	289.80
CL-692	266.41	38.90	18.00	42.00	46.40	38.90	17.89	274.40
MCC-200	262.08	31.80	16.00	33.00	39.97	44.00	17.00	233.50
MHC-18	276.85	28.00	15.01	32.00	42.90	39.00	16.00	219.50
APG-284	200.15	26.00	10.90	23.01	40.80	37.00	15.60	205.00
PS-44	276.07	19.01	10.40	20.00	43.57	47.00	16.90	202.90
M-2	296.72	28.00	14.00	39.00	51.68	42.00	15.70	202.40
APG-293	257.08	26.00	13.00	26.90	50.77	47.00	16.00	199.50
SKP-165	251.80	29.00	13.00	25.70	39.41	35.00	14.00	188.40
SKP-170	279.42	24.00	12.00	27.00	42.20	40.00	15.00	182.90
MHC-13	254.30	30.00	11.00	27.00	38.43	31.00	15.00	168.40
Mean	267,61	27.92	13.27	28.14	45.25	41.71	16.33	225.36
CD (P=0.05)	7.55	3.06	1.93	3.36	2.53	2.73	1.70	36.70
CV %	3.33	12.93	17.19	14.12	6.61	7.14	12.33	19.24

Table 12. Yield and yield attributing characters of CVT 2000 cardamom at Sakleshpur

Genotype	Racemes /panicle	Capsules /raceme	Yield (kg/ha)	Increase over released variety (ICRI 3) (%)
Control	179	2.9	4160	-
APG-310	19.8	3.0	464.6	
APG-306	18.8	3.1	545.3	2
APG-298	16.8	2.9	413.3	
SKP-165	190	3.1	624.7	140
SKP-170	20.4	3.2	785 3	43.3
MCC-200	16.7	2.9	373.7	-
MHC-10	16.7	3.1	607.0	10.7
MHC-13	14.7	3.2	404 7	-
MHC-18	16.5	3.1	481.0	-
PS-44	20.7	3.1	451.3	-
S-1	19.8	3.0	472.3	
CL-692	17.7	29	508 0	
ICRI-3	19.3	3.1	549.0	
CD (P=0.05)	4.8	0.2	198.2	1

2.2.3 CVT - 2005 - Series V (Mudigere, Pampadumpara)

A CVT comprising of 8 clones was initiated in 2005-06 at Mudigere center. CL-722 was found superior for dry capsule yield (337 96 kg/ha) and significantly superior over checks (M-2 and M-1). Other entries which recorded high dry capsule yield were PS-27, MCC-309 and MCC-246 MCC-246 had maximum height (281.96 cm), panicle number (65.33), longest panicle (52.33 cm) and maximum number of capsules (20.40) (Table 13).

Among the seven accessions evaluated at Pampadumpara PS-27 (208 77cm) registered maximum plant height followed by MCC-73 (201 67cm). PS-27 (208.77cm) and MCC-73 (201.67 cm) were found to be taller than the check *Greengold* (198 43cm). Number of tillers ranged from 24 66 (MCC-309) to 32 33 (PS-27). Three accessions namely, PS-27 (32.33), MHC-26 (31.66) MCC-73 (29.11) were found to have more number of tillers than the check *Greengold* (28.77). The highest fresh yield of capsules (550.2 g/plant) and dry yield (125.3 g/plant) of capsules was recorded in PS-27 followed by MHC-26 with 534.1 g/plant and 110 2 g/plant of fresh and dry yield, respectively (Table 14)

Table 13. Performance of cardamom clones in CVT 2005 at Mudigere

Clone	Plant height (cm)	Suckers /plant	Bearing suckers /plant	Panicle /plant	Panicle length (cm)	Capsules /panicle	Internodes /panicle	Dry capsule yield (kg/ha)
NCC-73	235 03	17 33	8 25	44 48	34 30	5 75	9 00	193 59
VCC-246	28 96	9 44	13 00	65 33	52 33	20 40	`8 77	286 35
NCC-309	243 59	19 42	12 44	60	46 82	16 25	6 44	290 17
V~C-26	236 18	17 78	11	58 40	43 27	8 63	6 33	279 99
PS-27	239 74	1989	13 78	53 19	4 72	7 45	18 67	298 5
CL-722	219 96	20 89	1. 00	58 85	50 08	8 55	91;	337 96
M-1	208 26	18 44	9 55	4; 33	35 36	14 85	`5 33	175 76
N-2	257 70	18 65	9 92	48 59	4; 43	15 81	16 33	99 58
Mean	240 30	1889	11 13	53 78	43 17	1721	16 25	257 69
CD (2=0 05)	22 07	2 C8	2 93	5 17	2 37	2 49	23	50 57
CV %	8 56	10 22	20 56	8 97	13 33	3 49	13 30	25 54

Table 14. Plant growth characters of CVT-2005 cardamom at Pampadumpara

Accession	Plant height	Tiller number	Fresh weight (g/plant)	Dry weight (g/plant)
CL-722	170 41	25 22	395 1	79 0
PS-27	208 77	32 33	550 2	125 3
MCC-246	186 87	26 57	401 5	82 3
MCC-309	188 31	24 66	384 3 .	76 5
MCC-73	201 67	29 11	423 2	86 23
MHC-26	182 38	31 66	534 1	110 2
Green gold	198 43	28 77	423 2	85 2
Mean -	191 62	28 79	441 1	91 9
CD (P=0 05)	7 15	2 43	5 23	3 17

2.2 4 CVT 2007 Series VI

(Mudigere, Pampadumpara, Sakleshpur)

Trial has been laid out in a randomized block design during July 2008 at Mudigere and Pampadumpara centres with thirteen accessions namely, IC-349545, IC-349651, IC-547167, IC-547185 (Appangala), CI-726 and CI-691 (RARS, Mudigere), MCC-346 (ICRI, Myladumpara), PI No 14 and CR-6 (CRS, Pampadumpara) and Green Gold & PV-2 (checks) At Sakleshpur SKP-104 and SKP-164 are being multiplied for distribution to other centers and the trial would be initiated during June 2008

2 3 Varietal Evaluation Trial

2 3 1 Initial evaluation trial (IET-I) (Mudigere)

Fifteen open pollinated progenies were evaluated at Mudigere centre 2-4-D-11 yielded highest (220 14 kg/ha) followed by 2-5-D-11 (195 40 kg/ha) and 7-24-D-11 (189 00 kg/ha) 2-4-17 D-10 was superior for number of bearing suckers (19 67) and number of panicles/plant (35) 2-5-D-11 had longest panicle length (59 44 cm) and number of capsule/panicle (65 44)

2 3 2 Initial evaluation trial (IET-II) (Mudigere)

In the IET with 13 entries at Mudigere centre, CL-692 yielded highest (332 50 kg/ha) followed by Sel-800 (308 2 kg/ha) and CL-722 (307 50 kg/ha) CL-722 was tallest (301 33 cm) and had maximum bearing suckers (20 00), HS-1 was found superior for number of panicles (42 67), Sel-800 for panicle length (61 80 cm) and CL-691 for number of capsules (50 11)

2 4 Nutrient Management Trial

2 4 1 Effect of biofertilizer *Azospirillum* on cardamom (Final report) (*Mudigere*)

The results obtained at Mudigere indicate that the application of inorganic P alone or with P-solubilizer performed significantly superior over other treatments (Table 15 & 16) Application of FYM with or without bioorganism yielded less

Table 15 Effect of Azospirillum on yield parameters of cardamom at Mudigere

Treatment	Bearing suckers	Panicle number	Panicle length (cm)	Capsules /panicle	Nodes /panicle
Inorganic N (100%) + Azospirillum (50 g) + FYM (5 kg)	23 87	41 00	65 71	23 60	16 64
Inorganic N (75%) + Azospirillum (50 g) + FYM (5 kg)	20 80	38 07	65 87	22 75	15 72
Inorganic N (50%) + Azospirillum (50 g) + FYM (5 kg)	19 33	34 73	64 20	21 49	14 45
FYM (5 kg) + Azospirillum (50 g)	16 93	30 40	62 87	16 79	13 45
FYM (5 kg)	19 67	31 47	63 29	17 79	14 01
FYM (10 kg) + Azospirillum (50 g)	18 33	30 47	64 62	17 64	13 15
FYM (10 kg)	17 60	29 53	63 87	17 32	15 08
Inorganic N (100%)	23 73	39 40	67 71	23 21	16 64
Inorganic N (75%)	20 00	38 87	66 20	22 89	1611
SEm=	0 58	0.81	1 14	0 46	0 41
CD (P=0 05)	1 74	2 43	NS	1 38	1 23
CV (%)	15 06	14 05	13 05	13 91	14 69

Table 16 Effect of Azospirillum on yield of cardamom at Mudigere

Treatment	2004	2005	2006	2007	Mean	CB Ratio	
Inorganic N (100%) — Azospirillum (50 g) — FYM (5 kg)	101 78	213.24	220 76	210.14	186.48	1:1 98	
Inorganic N (75%) + Azospirillum (50 g) - FYM (5 kg)	79.40	176.52	208.58	189.62	163 56	1.1 77	
Inorganic N (50%) + Azospirillum (50) + FYM (5 kg)	77 74	161.58	169.16	156.30	141 06	1.1 35	
FYM (5 kg) + Azospirillum (50 g)	58.85	140.10	150.16	137.10	121.55	1:1 34	
FYM (5 kg)	59.50	130 54	152.36	136.52	119.73	1.1.33	
FYM (10 kg) + Azospirillum (50 g)	65 42	121.28	153.59	124.27	116 13	1:1 41	
FYM (10 kg)	58.91	114.82	145.29	116.00	108.77	1:1 40	
Inorganic N (100%)	101.50	198.74	210.79	190.62	175.25	1:1.92	
Inorganic N (75%)	81.44	159 44	194.37	150.11	146.34	1:1.50	
\$ Em=	1.44	0.91	4.98	3.25			
CD (P=0.05)	4.32	2 63	14.93	7.21	-		
CV (%)	10.14	13.57	14.83	12.81			

2.4.2 Effect of biofertilizer P-solubilizers on cardamom (Final report) (Mudigere)

At Mudigere, application of P-solubilizer along with 100% recommended inorganic P (50 g/plant) was significantly superior over all other treatments (Table 17). It also recorded the highest cost benefit ratio, and showed significant improvement in soil available P. This was closely followed by the application of 75% inorganic P \pm P-solubilizer. However, this was on par with the application of 100% inorganic P-alone. Application of FYM with or without bioorganism recorded low yield. The supporting yield parameters also had similar tendency as that of yield obtained.

Table 17. Effect of P-solubilizer in INM on yield of cardamom at Mudigere

Treatment	2004	2005	2006	2007	Mean	CB Ratio
Inorganic P (100%) + P-solubilizer (50 g)+ 5 kg FYM	118.94	220.32	233.22	235.32	201.94	1:1.99
Inorganic P (75%) ± P-solubilizer (50 g) + FYM (5 kg)	97.44	211 58	193 28	218.58	180.22	1:1.77

Inorganic P (50%) P-solubilizer (50 g) FYM (5 kg)	88.32	167 24	173 49	160 23	147 32	1:1.35
FYM (5 kg) P-solubilizer	63.43	126.61	130.03	125.11	112.29	1:1 34
FYM (5 kg)	74.37	118.70	136.49	117.30	111.71	1:1.33
FYM (10 kg) P-solubilizer (50 g)	75.51	137.52	138.56	136.73	122.08	1:1.41
FYM (10 kg)	71.31	126.92	151.10	125.9.1	118.81	1:1.40
Inorganic P (100%) +- FYM	98 00	216.72	212.70	210.00	182.93	1:1.92
Inorganic P (75%) + FYM	96 35	165.70	177.91	160.15	150.02	1:1.50
SEm±	5 36	0.80	5.27	3.47		,
CD (P=0.05)	16.08	2 43	15.80	10.31		
C _V (%)	12.91	12.59	15.31	12.51		

2.4.3 Effect of neemcake on the productivity, pest and disease incidence in cardamom (*Mudigere*)

At Mudigere, application of neem cake 0.5 or 1 kg/plant was found to be significantly superior over control (Table 18). The maximum dry capsules yield was obtained with the application of neem cake (1.0 kg/plant during May). But high shoot borer damage was noticed. Application of neem cake 0.5 kg/plant during May recorded the highest cost benefit ratio (1:1.86).

Table 18. Effect the neem cake on the productivity, pest and disease incidence on cardamom at Mudigere

Treatment	2005	2006	2007	Mean	CB ratio
Neem cake 0.5 kg/clump (once in May)	233.74	158.51	230.54	207.59	1:1.86
Neem cake 0.5 kg/clump (twice in May/September)	225.56	161.72	223.46	203.58	1:1.58
Neem cake 1.0 kg/clump (once in May)	246.48	161.75	240.48	216.23	1:1.62
Neem cake 1.0 kg/clump (twice in May/September)	222.48	166.40	220.33	203.07	1:1.03
Without neem cake	209.30	152.25	195.44	175.66	1:1.80
SEm±	2 62	4.06	3.85		
C D (P=0.05)	7.08	12.50	10.27		
C V (%)	12.30	15.08	11.98		

2.5 Pest Management Trial

Bioecology of natural enemies of major pests of cardamom (Mudigere)

Observations on natural enemies of the major pests of cardamom with special reference to cardamom thrips and capsule borer at Mudigere indicated that the general predators like spiders in the cardamom ecosystem, larvae of Chrysoperia sp. and certain predatory mites were found predating on thrips, more often

weather factors (rainfall) playing a vital role in minimizing thrips population. The larvae of Conogethes punctiferalis were found being parasitized by Xanthopimpla sp., Ropalidia sp. and an unidentified species of Ichneumonia. No microbes were found infecting these pests auring the study period.

2 5 2 Estimation of quantitative and qualitative losses due to thrips damage in cardamom (Mudigere)

At Mudigere centre, thrips damage was assessed based on the per cent scabbed surface areas of the capsules Capsules harvested and dried were graded in to four groups as 0 = no damage, 1 = up to 10% scabbed area, 2 = 11% to 33% scabbed area and 3 = >33% scabbed area. Observations recorded showed significant reductions in the number of seeds with the increase in scabbed area by thrips

2 5 3 Management of shoot fly in cardamom (*Mudigere*)

The efficacy of four insecticides viz, phorate, fipronil, thiamethaxam and imidacloprid and three organic insecticides viz, neem cake, fish oil rosin soap and neem seed kernel extract (NSKE) were compared for the management of shoot fly in newly planted cardamom plantation at Mudigere centre during 2007-08. The population of shoot fly was significantly low in all the treatments compared to NSKE and untreated control. However, the treatments phorate, imidacloprid, thiamethaxam and neem cake were found superior in recording lowest number of dead hearts per clump compared to other chemical treatments (fipronil and fish oil rosin soap (Table 19)

Table 19 Bioefficacy of insecticides against shoot fly in cardamom at Mudigere

Treatment	Dosage	No of dead hearts at different DAT						
		Pretreatment	30	60	75	Mean		
Phorate	10 g	7 00	2 00	1 00	1 67	2 34		
Neem cake	½ kg	6 66	3 33	1 67	2 00	2 33		
Fipronil	1 5 ml	7 33	4 67	4 33	3 00	4 00		
Fish oil rosin soap	4 g	7 67	4 33	5 00	3 67	4 33		
NSKE	4%	7 00	5 33	5 78	5 00	5 37		
Thiamethaxam	05g	10 33	2 33	2 39	1 00	1 90		
lmidacloprid	0 5 ml	9 00	1 33	2 33	1 67	1 77		
Control		9 00	5 00	6 00	5 33	5 44		
CD (P= 0 05)		3 01	1 23	1 10	1 50			

2 5 4 Management of cardamom root grub through entomopathogenic nematodes (Pampadumpara)

A field experiment was conducted at CRS, Pampadumpara to evaluate the efficacy of two isolates of Heterorhabditis sp at two different concentrations against cardamom root grub. Cambination of entomopathogenic nematodes (EPN) with imidacloprid (0.01%) was also attempted in the study. Treatments were superimposed during evening hours of April 2008 and the field was adequately moistened before release of EPN. Initial population of the root grub was assessed as 25.4 in 30 cm³ of soil before the application of treatments. Application of EPN was found to be effective in reducing the population of cardamom root grub.

Application of EPN @ 100 IJ/grub or 200 IJ/grub was found to be at par in reducing the root grub population. However, the local isolate *H. indica* was found to be more effective than *H. bacteriophora* in suppressing the population of caraamom root grub (60.7%). The cardamom root grub population ranged from 3.3 to 1.3.4 in 30 cm³ of soil after the application of EPN S gnificant reduction (82.7%) of cardamom root grub was observed in plots treated with combined application of imidacloprid (0.006%) and *H. indica* (1.00 IJ/grub). Application of two different concentrations of *H. indica* (1.00 IJ/grub or 200 IJ/grub) and imidacloprid (0.01%) alone was found to be at par in the suppression of caraamom root grub

The root grub mortality increased significantly when the nematode was applied alone or in combination with imiaacloprid. In addition to increase in root grub mortality, combined application of nematode imidacloprid increased the speed of kill compared to nematode or imidacloprid used separately. Imidacloprid is therefore compatible with entomopathogenic nematodes and the sluggishness brought about on cardamom root grub made easy entry of EPN in to the host resulting in accelerated speed of kill. A combined application of nematode and neonicotinoid is therefore suggested as a curative method in the management of cardamom root grub. Care should be taken to ensure adequate moisture content while applying EPN and application of EPN should be restricted to evening hours for better results.

2 5 5 Trial on management of panicle rot and clump rot diseases of cardamom in existing plantation (Mudigere Pampadumpara)

At Mudigere all the treatments were found effective in reducing the incidence as compared to control. The minimum of 3.7% blotch was recorded in copper oxychloride(COC) drenching which was followed by potassium phosphonate spray and drench as compared to control (5.1%). Application of COC (0.3%) drenching gave significantly higher dry capsule yield (253.5 kg/ha) followed by potassium phosphonate (0.3%) spray and drench.

Biocontrol agents and fungicides were evaluated against capsule rot and clump rot diseases of cardamom at Pampadumpara Least disease incidence on tillers panicles and capsules was recorded in the plots treated with *Trichoderma harzianum* and consortium of bacteria @ 50 g/plant followed by consortium of bacteria @ 50 g/plant Tiller infection due to clump rot disease ranged from 3 12% to 17 25% for all the treatments (Table 20) Minimum panicle infection (3 54%) and capsule infection (4 61%) due to capsule rot was recorded in the plots treated with *T harzianum* and consortium of bacteria @ 50 g/plant and maximum infection on panicles (16 31%) and capsules (16 92 %) was observed in control plots

Table 20 Management of panicle rot and clump rot diseases of cardamom in existing plantation at Pampadumpara

Treatment	Tiller infection (%)	Panicle infection (%)	Capsule infection (%)		
Trichoderma harzianum (50 g/vine)	6 92	6 92	6 21		
Consortium of bacteria (50 g/vine)	5 31	5 21	4 92		
Trichoderma harzianum +	3 12	3 54	4 61		
consortium of bacteria (50 g/vine)					
COC (0 1%) drenching	7 24	8 24	9 21		
Potassium phosphonate (0 3%) spray and drench	7 39	7 81	8 65		
Control	17 25	16 31	16 92		
CD (P=0 05)	0 92	0 82	. 0 93		

2 5 6 Trial on management of panicle rot and clump rot diseases of cardamom in new plantation (Mudigere, Pampadumpara)

The maximum number of suckers (2 54/hill) was produced in T_3 (combined application of T harzianum and consortium of bacteria) as compared to other treatments at Mudigere. The minimum tiller infection (1 16/hill) was recorded in T_5 (0 3% potassium phosphonate spray and drench) as compared to other treatments. All the treatments were non-significant in reducing the incidence of leaf spot and leaf blotch. More number of suckers (2 54/hill) and low incidence of sucker infection, leaf spot and leaf blotch were recorded in V_3 (Nellani gold) as compared to V_3 (Mudigere-1) and V_3 (ISR-Avinash)

Pre and post monsoon treatments were imposed during 2007 at Pampadumpara. Three varieties of cardamom namely Green gold, PV-2 and IISR-Avinash were planted for evolving a management strategy for capsule rot and clump rot diseases of cardamom. Maximum disease incidence was noticed in Green gold followed by PV-2. The incidence was not noticed in IISR-Avinash. The infection for the varieties is given in Table 21. Plots treated with T. harzianum and consortium of bacteria in combination @ 50 g/plant. was found effective in the management of disease followed by consortium of bacteria alone @ 50 g/plant.

Table 21 Management of panicle rot and clump rot diseases of cardamom in new plantation at Pampadumpara

Treatment		PV-2			Green Gold			
	Tiller infection (%)	Panicle infection (%)	Capsule infection (%)	Tiller infection (%)	Panicle infection (%)	Capsule infection (%)		
Trichoderma harzianum (50 g/vine)	5 91	7 92	6 21	6 32	7 72	7 31		
Consortium of (50 g/vine)	4 32	6 21	4 92	5 42	7 41	5 21		
Trichoderma harzianum +- consortium of bacteria (50 g/vine)	2 12	4 54	4 61	3 32	5 44	4 12		
COC (0 1 %) drenching	6 25	9 24	9 21	7 42	10 21	10 41		
Potassium phosphonate (0 3%) spray and drench	6 33	8 81	8 65	7 43	911	9 23		
Control	15 32	17 31	17 92	16 42	18 34	18 79		
CD (P=0 05)	0 92	0 82	0 93	0 92	0 82	0 93		

3. Ginger

3.1 Genetic Resources

3.1.1 Germplasm collection, characterization, evaluation and conservation (Chintapalle, Dholi, Kumarganj, Pottangi, Pundibari, Raigarh, Solan)

At Chintapalle centre, among 6 collections, Vamugedda, recorded the highest fresh rhizome yield of 11.5 t/ha, followed by Bilukinchangi (11.0 t/ha).

Among 47 germplasm lines evaluated at Dholi, nine germplasm accessions (RG-43, RG-39, RG-29, RG-28, RG-25, RG-15, RG-13, RG-7 and RG-3) registered high yield RG-43 recorded the maximum yield 9.0 kg/3m² followed by RG-39 (8.5 kg/3m²)

At Kumarganj, maximum yield of 351.20 q/ha was recorded in genotype NDG-55 followed by NDG-28 (140 q/ha), NDG-9 (123 q/ha), NDG-27 and NDG-6 (121 q/ha) over control.

Out of total 177 ginger accessions collected at Pottangi, 143 accessions were evaluated and only 34 accessions yielded more than 8 kg/3 m², the range of yield being 3.0 kg to 12.5 kg/3m². The highest fresh rhizome yield was recorded by No-13 (12.5 kg/3m²), Zo-22 (12.0 kg/3m²), followed by KG-42 (11.5 kg/3m²) and PGS-8 (11.0 kg/3m²).

Twenty nine germplasm of ginger were evaluated at Pundibari centre. Highest rhizome yield/plant was recorded in GCP-31 (263.50 g) followed by GCP-32 (260.50 g), GCP-21 (59.00 g) and GCP-04 (247.33 g). Lowest rhizome yield/plant was recorded in GCP-7 and GCP-22 (148 33 g for both), which was followed by GCP-24 (153.66 g).

Out of the thirty three germplasm accessions were evaluated at Raigarh, maximum yield was obtained in genotype IG-5-10 (3.01 t/ha).

Two hundred and seventy nine collections maintained at Solan were evaluated under field conditions for different horticultural characters. The yield per plot (3 m²) of ten promising lines varied from 4.40 to 8.0 kg. Only two collections viz SG-1142 and SG-27/04 gave yield more than the check Himgiri. Maximum dry matter (21%), essential oil (2%) and oleoresin (6%) were recorded in SG-1142, SG-45/04 and SG-026, respectively. The crude fiber content was minimum (3.0-4.0%) in SG-1026, SG-1116 and SG-17/04. The disease incidence varied from 1.0% (SG-1116) to 3.0% (SG-1704). The germplasm conserved at various AICRPS centers are given in Table 22.

Table 22 Ginger germplasm collection of AICRPS centres

 Centre	Indigenous	Exotic	Total	
Chintapalle	06		06	
Dholi	47		47	
Kumarganj	58		58	
Pottangi	174	3	177	
Pundibari	48	-	48	
Raigarh	44		44	
Solan	279		279	
Total	656	3	659	

3 2 Coordinated Varietal Trial (CVT)

3 2 1 CVT 2000 Series V

(Pottangi, Raigarh)

There was significant difference among the cultivars for fresh rhizome yield at Pottangi centre. Highest fresh rhizome yield was recorded by V_1E_4 -5 (29 21 t/ha) followed by V_2E_5 -2 (28 29 t/ha) with 32 29% and 28 12% higher yield over national check Suprabha

The trial was initiated in Raigarh during 2001-02 and is in the fifth year of progress. Seven entries were evaluated during 2007-08. The highest yield was obtained in IG-1 (9.7) t/ha.

3 2 2 CVT 2005 Series VI

(Solan)

The entries did not perform well during the period

3 2 3 CVT 2006

(Kumarganj, Pundibari, Raigarh)

Maximum fresh thizome yield of 52 33 q/ha was obtained in Suprabha (check) followed by 50 33 q/ha in entry V_2 E_5 -2 at Kumarganj centre

Analysis of data at Pundibari centre revealed that the genotype GCP-05 (61 88 cm) had highest plant height followed by GCP-31 (61 74 cm) Highest tiller number was recorded in genotype PGS-8 (9 25) whereas lowest value was recorded in IG 1 (6 42) GCP-31 showed the highest yield per plot (2 48 kg) followed by GCP-05 (2 22 kg) and IG-1 recorded lowest yield (1 14 kg) The lowest disease incidence was recorded in GCP-05 (51 53%) followed by GCP-31 (53 33%) and highest in PGS 8 (62 96%) Highest rhizome yield was recorded in GCP-31 (5 00 t/ha) followed by GCP-05 (4 48 t/ha)

At Raigarh centre, maximum yield was obtained in IG-1 (8 44 t/ha)

3 3 Comparitive Yield Trial

(Pottangi)

There was significant difference among the cultivars for fresh rhizome yield at Pottangi centre. Highest fresh rhizome yield was recorded by 20.2 (27.52 t/ha) followed by V_1S_1 -2 (27.37 t/ha)

3.4 Initial evaluation trial (IET)(Dholi, Pottangi, Raigarh, Solan)

Significant difference among the cultivars was recorded among the entries tested at Pottangi for fresh rhizome yield. Highest fresh rhizome yield was recorded by V_1E_4 -5 (28.92 t/ha) followed by PGS-9 (28.46 t/ha) with 33.76% and 31.63% increase over the check variety Suprabha.

Ten entries were evaluated in IET during 2007-08 at Raigarh centre and maximum yield was obtained in IG-1 and IG-5-24 (3.81) followed by IG-5-2 (3.61 t/ha).

Entries showed significant differences for quality and yield per plot at Solan centre (Table 23). Yield varied from 4.0 kg to 6.2 kg per plot. Only two collections (SG-680 and SG-857) gave yield more than check (Himgiri). SG-906 was found superior for quality attributes with 17% dry matter, 2.0% essential oil and low fiber content (4.5%). Between two high yielding collections, SG-680 was found superior for all quality attributes. The disease incidence varied from 5% (SG-857) to 4.5% (V1C1-4).

The experiment failed at Dholi centre due to heavy rain during September 2007

Table 23. Yield, disease incidence and quality attributes of IET ginger at Solan

Entry	Yield/plot (kg)	Converted yield (t/ha)	Disease incide- nce %	Dry matter (%)	Essential oil (%)	Oleoresin (%)	Crude fibre (%)
SG-970	4.0	8.04	2.5	15.0	1.00	3.5	6.0
SG-1105	4.2	8.44	1.5	14.5	1.00	4.0	6.5
SG-03/04	4.2	8.44	1.0	15.0	0.75	3.0	6.8
SG-680	6.2	12.46	0.5	16.0	1.86	5.5	5.0
SG-825	5.2	10.45	1.0	15.0	1.80	6.5	6.0
PLS-4	5.2	10.45	3.5	16.5	1.80	6.5	6.0
SG-885	5.7	11.45	2.5	17.0	1.75	5.0	5.0
SG-906	5.5	11.05	1.5	17.0	2.00	6.5	4.5
SG-857	6.2	12.46	0.5	18.0	1.50	6.0	7.0
SG-1103	5.6	11.25	1.5	16.5	1.00	5.0	6.0
V1C1-4	5.5	11.25	4.5	16.0	1.00	40	5.8
SG-1007	4.9	9.85	2.5	15.0	1.50	6.5	3.5
SG-991	4.7	9.44	2.5	15.5	2.00	6.0	3.5
SG-933	4.5	9.04	2.0	13.5	1.00	4.0	5.0
Himgiri	6.0	120.60	2.0	17.5	1.50	5.0	5.5
CD (P= 0.05)	1.4	-	-	0.9	0.3	0.7	1.0

3.5 Quality Evaluation Trial

3.5.1 Evaluation of ginger germplasm for quality (Solan)

At Solan, among the 41 accessions analyzed for different quality attributes viz., dry matter, essential oil, oleoresin and fiber content during 2008, 23 were found to be superior for quality attributes and had significantly high dry matter content than Himgiri, with more than 1.5 per cent essential oil and more than 4.5 percent oleoresin. Fibre content in these collections was recorded to be less than 6.0 per cent. Dry matter content

ranged from 15 00 to 24 16% Essential oil and oleoresin contents varied from 0 5 to 2 0 and 4 0 to 6 7per cent, respectively Among these 41 collections SG-49/04, 27/04 followed by SG-1030, SG-17/04, SG-603, SG-856, SG-713, 14/04 and SG-4 were found significantly superior for dry matter content in comparison to check Himgiri. The essential oil contents in 59/04, SG-062, SG-4, SG-983, SG-780, SG-861 SG-995 and SG-7/04 were found to be significantly higher than Himgiri. However, significantly less fibre content was recorded in SG-702, 48/04, and SG-030 in comparison to check Himgiri. SG-27/04, SG-45/04 and SG-896 were identified as high quality and high yielding (> 5 kg/plot) accessions. However, other collections like SG-1030, SG-856, SG-49/04, etc. also exhibited superior quality attributes but recorded lesser yield.

3 6 Nutrient Management Trial

3 6 1 Effect of micronutrients on ginger (Kumaraganj, Pottangi, Raigarh)

At Kumarganj maximum fresh ginger rhizome yield of 55 53 a/ha was observed in T_{27} treatment (foliar spray of zinc @ 0.5% + Bo @ 0.2% + Fe @ 1.0% after 60 and 90 days of planting) followed by T_{19} , with an yield of 49 96 a/ha. Four years pooled data also showed similar findings

Significant difference was observed among various treatments at Pottangi centre. Highest fresh rhizome yield was obtained in T-14 (25 kg/ha of Zn, Fe, Bo as soil application) with 26 36 t/ha followed by T-15 (Zn and Bo 25 kg/ha as soil application and Fe as 0.5% foliar spray) which recorded an yield 19 21 t/ha (Table 24)

At Raigarh, application of zinc sulphate resulted in appreciable improvement in fresh rhizome yield of ginger Increasing levels of zinc sulphate also increased the rhizome yield of ginger significantly. Maximum yield of fresh rhizome (10 57 t/ha) was recorded with applications of 0 5% zinc sulphate as foliar spray (60 and 90 DAP). The minimum yield of 8 46 t/ha was recorded without zinc application. Increasing level of boron also increased the yield of ginger significantly. Application of 0 2% foliar spray of borax (60 and 90 DAP) produced maximum yield of 10 89 t/ha. The minimum yield of 7 70 t/ha was recorded without application of borax. Application of ferrous did not increase the yield of ginger significantly. Maximum yield of 9 4 t/ha was recorded with application of 1 0% ferrous sulphate (60 and 90 DAP) as foliar spray. The interaction effect between Zn, Bo and Fe was not found significant, but the yield was appreciably higher at higher levels of Zn, Bo and Fe. The maximum rhizome yield of 12 98 t/ha was recorded with foliar spray of 0 05% zinc sulphate (60 and 90 DAP) 0.2% of borax (60 and 90 DAP) and 1.0% of ferrous sulphate (60 and 90 DAP).

Table 24 Effect of micronutrients on yield of ginger at Pottangi

Treatment		Plot yield (kg/3m2)			Average	Yıeld	
		2005	2006	2007	yield (kg/3 m2)	tons/ha	
T-1	ZnO BoOFeO	6 73	66	60	6 50	14 95	
T 2	ZnO BOOFe25	6 60	70	71	6 90	15 87	
T-3	Zn0 BO0 Fe0 5	6 73	66	68	6 71	15 43	
T-4	Zn0 B25Fe0	6 57	67	7 2	6 82	15 69	
T-5	ZnO B25Fe25	6 63	7 4	7 3	7 11	16 35	
T-6	Zn0 B25 Fe0 5	6 60	7 2	71	6 96	16 02	
T-7	Zn0 B0 5 Fe0	6 53	67	66	6 61	15 20	
T-8	Zn0 B0 5 Fe 25	6 63	7 2	70	6 94	15 96	
T-9	Zn0 B0 5 Fe0 5	6 50	7 0	68	6 76	15 56	

CD (P	=0 05)	NS	12	10			
T-27	Zn0 580 5Fe0 5	6 33	7 4	60	6 81	15 66	
T-26	Zn0 5 B0 5 Fe25	6 63	76	7 1.	711	16 35	
T-25	Zn0 5 80 5 Fe0	6 08	67	6 8	6 52	15 01	
T-24	Zn 0 5 8 25 Fe0 5	7 63	7,3	6 8	7 24	16 65	
T-23	Zn0 5 825 Fe25	7 43	82	7 4	7 67	17 65	
T-22	Zn 0 5 B25 Fe0	6 47	70	70	6 82	15 69	
T-21	Zn 0 5 B0 Fe 0 5	6 63	7 1	69	6 87	15 81	
T-20	Zn0 5 B0 Fe25	6 80	7 1	7 4	7 10	16 33	
T-19	Zn0 5 80 Fe0	6 80	70	68	6 86	15 79	
T-18	Zn25 B0 5 Fe0 5	7 30	8 0	74	7 40	17 15	
T-17	Zn25 B0 5 Fe25	7 50	8 2	7 2	7 50	17 25	
T-16	Zn25 B0 5 Fe0	8 00	7 5	66	7 36	16 94	
T-15	Zn 25 B25 Fe0 5	7 76	86	80	8 35	1921	
T-14	Zn25 B25 Fe25	8 06	9 4	91	8 50	26 36	
T-13	Zn25 B25 Fe0	7 63	76	60	7 31	16 81	
T-12	Zn25B0 Fe 0 5	6 83	7 1	69	6 94	15 96	
T-11	Zn25 B0 Fe25	7 27	77	7 2	7 39	16 99	
T-10	Zn25 B0 Fe0	6 86	7 4	7 1	7 12	16 37	

3 6 2 Organic farming in ginger (2006) {Dholi, Kumarganj, Pottangi, Pundibari, Solan}

The experimental plots were severely affected by rhizome rot disease and the yield was very poor at Kumarganj centre. Maximum fresh rhizome yield of 68.8 a/ha was obtained by the application of 50% recommended dose of fertilizer (60.40.40 NPK) \pm 50% FYM. @ 10 t/ha \pm Azospirillium (5 kg/ha) \pm seed treatment and soil application of *P fluorescence* and *Trichoderma* @ 50 g/3 m² followed by fresh rhizome yield of 54.19 a/ha by application of 100% FYM (20 t/ha) by seed treatment and soil application of *P fluorescence* and *Trichoderma* @ 50 g/3 m²

There was no significant difference among different treatments for fresh rhizome yield at Pottangi centre Highest cost benefit ratio 1 1 79 and highest yield (20 24 t/ha) was recorded in fully inorganic treatment

At Pundibari, application of integrated nutrients on ginger produced highest clump weight of 126 g and highest yield of 2 91 kg/plot and highest oleoresin of 3 7% in the rhizomes followed by application of organic nutrients on ginger with a clump weight of 101 g and yield of 2 13 kg per plot

At Solan, yield of ginger was significantly high in fully organic in comparison with the treatments. Maximum yield of 4.90 kg was obtained in fully organic treatment followed by integrated treatment.

The experiment failed at Dholi centre due to heavy rain

3 7 Disease Management Trial

3 7 1 Disease surveillance and etiology of rhizome rot in ginger (Solan)

The disease-affected rhizomes of ginger were collected from Bilaspur, Sirmour and Solan districts of the state and disease analysis report reveals the association of all the major pathogens (Table 25)

Table 25. Disease surveillance on rhizome rot of ginger

Location	District	Plant part affected	Associated pathogen
Sohari	Bilaspur	Rhizome	Pythium, Ralstonia
Sohari	-do-	-do-	Ralstonia, Meloidogyne
Binola	-do-	-do-	Ralstonia
Soshan	-do-	-do-	Pythium, Ralstonia
Rohin	-do-	-do-	Ralstonia, Meloidogyne
Kotlu Brahamna	-do-	-do-	Ralstonia
Kotlu Brahamna	-do-	-do-	Ralstonia
Gaura Hinnar	Sirmour	-do-	Ralstonia, Fusarium
Nauni	Solan	-do-	Pythium, Meloidogyne, Fuṣarium

3.7.2 Biocontrol studies on rhizome rot of ginger (final report) (Kumarganj, Pottangi)

At Kumarganj, minimum incidence (24%) of rhizome rot and maximum rhizome yield of 45.55 a/ha was observed in the treatment T_6 (seed treatment of rhizome with hot water at 51°C for 30 minutes and T_6 . It has a full for 30 minutes mixed with neem cake) followed by 34.66% in treatment T_2 (seed treatment with hot water at 51°C for 30 min). In four years pooled data, T_6 recorded minimum rhizome rot incidence (40.2%) and increase in yield by 120.73% over control.

At Pottangi, highest rhizome yield of 20.54 t/ha was obtained in seed treated with mancozeb 3 g/l \pm carbendazim 1g/l \pm chloropyriphos 2ml/l for 30 min and soil application of thimate (10G) 1kg a.l/ha with 44.59% increase over control (Table 26).

Table 26. Effect of biocontrol agent, fungicide and hot water treatment on incidence of rhizome rot disease in ginger at Pottangi

	Germin- ation (%)		Rhizome yield (kg/3m2)			3m2)	Project- ed yield	Increase over con-
			2005	2006	2007	Mean	(t/ha)	trol (%)
No seed treatment	72	38	4.6	6.6	6.3	5.83	13.41	
Seed treatment with hot water 51°C for 10 minutes	76	31	5.2	7.8	7.0	6.60	15.33	
Seed treatment with mancozeb 3 g/l + carbendazım 1g/l + chloropyriphos 2ml/l for 30 min and soil application of thimate (10G) 1kg a i/ha	86	16	6.6	10.4	9.8	8.93	20 54	44.59
Seed treatment with Trichodern 2.5 g /l for 30 min for 1 kg seed	na 74	24	5.2	8.2	8.3	7.23	16 63	
Hot water seed treatment + T ₃	76	29	6.3	9.6	9.4	8.43	19.39	30.94
Seed treatment with hot water +Trichoderma, FYM, neem cake soil application	76	25	6.2	8.6	8.1	7.63	17.56	
Soil application with only Trichoderma @ 10 kg/ha	72	30	5.2	7 2	76	6 66	15.38	
Soil application with neem cake @ 1t/ha during planting	74	31	5.4	7.4	7 8	6.86	15.79	
CD (P= 0 05)			NS	1.3	1.6			

3 7 3 Integrated management of *Pythium, Fusarium* and *Ralstonia* in ginger (final report) (Kumargani, Pundibari, Raigarh, Solan)

At Kumarganj, treatment of seed rhizomes with mancozeb (3 g/l) for 30 minutes recorded a low of 17% rhizome rot disease incidence and maximum fresh rhizome yield of 35 30 q/ha. Four years pooled aata also showed lowest incidence of rhizome rot disease (40 12%) with highest yield of 22 9 q/ha seed treatment of rhizomes with mancozeb (3 g/l) for 30 minutes with maximum disease control of 62 2 per cent and rhizome yield of 71 44 per cent (45% increase over control)

At Pundibari, during 2003 - 2004 seed treatment with T harzianum (T₂) was the best in reducing the disease incidence at different phases of crop growth. This treatment reduced 44%, 36 69% and 30 41% disease over control In 2004 - 2005 and 2005 - 2006 the best treatment was found to be seed treatment with hot water at 51°C for 30 minutes (T,) This treatment reduced 53 31% and 67 50% disease over control In 2006 – 2007 and 2007 – 2008, the best treatment was seed treatment with Ridomil Mancozeb (Ts) (100 ppm metalaxyl) This treatment reduced 75 31% and 76 44% disease over control in respective years However, except in 2003 – 2004, there is no significant difference between T_2 , T_4 and T_5 regarding disease incidence in all the other 4 years Cost benefit ratio was highest (1 2 85) with T harzanium - neem cake application followed by 0 1% Metalaxyl (1 2 71) Regarding yield all the best treatments produced highest yield in respective years In pooled data analysis (Table 27), it was found that seed treatment with T harzianum (Ta) was the best treatment in reducing the disease over control T₂ is followed by T₄ (66 07% disease reduction) and T₄ (64 45% disease reduction). These three treatments are statistically at par with each other. Regarding fresh rhizome yield, the maximum yield was obtained from T_a (5 29 kg/plot) followed by T_a and T_a with their yields of 4 68 kg and 4 67 kg/plot respectively. In case of yield there is significant difference between T₂ and all other treatments but T_2 and T_5 are statistically at par with each other Cost Benefit ratio was also found highest in T_2 (1 1 90), which was followed by T_{s} (1 1 77) and T_{s} (1 1 75)

At Raigarh, application of Ridomil Mancozeb (100 ppm) reported minimum disease incidence (21 15) and maximum yield 9 8 t/ha Maximum disease incidence (48 55) and minimum yield t/ha (4 9) was found in control plot (Table 28)

Among the disease management treatments assessed at Solan centre, rhizome solarization, hot water treatment and mancozeb treatments decreased the incidence of rhizome rot diseases to 5 05, 6 13 and 6 86 per cent, respectively due to *Pythium*, *Fusarium* and *Ralstonia* infection significantly over other treatments. These treatments were at par with each other in minimizing the disease over the years 2002 to 2007. Besides the yield of ginger significantly increased (7 287, 7 122 and 6 326 kg/3 m² respectively). Rhizome solarization for 45 min (11 am to 11 45 am) was economically a superior treatment followed by mancozeb (0 3%) and hot water rhizome treatments with benefit cost ratio of 19 91, 14 02 and 11 43 respectively, in increasing the yield and decreasing the incidence of diseases.

Table 27. Pooled data of integrated management of *Pythium*, *Fusarium* and *Ralstonia* in ginger at Pundibari

Trec	atment	Germin- ation (%)	Disease inciden- ce (%) (150 DAS)	Percent reduction over control	Yield (kg/plot)	Projected yield (t/ha)	C : B Ratio
T-1	Mancozeb (0.3%) seed treatment	85.30	13.40 (21.47)	46.89	3 69	7 44	1:1.39
T-2	Seed treatment with T. harzianum @ 4 g/kg	89.26	7.95 (16 38)	68 49	5.29	10.66	1:1.90
T-3	Rhizome solarization in polybags for 2 h before sowing	84.74	11.87 (20.15)	52.95	4.22	8.51	1:1.58
T-4	Seed treatment with hot water treatment (51°C for 30 minutes)	89 22	8.97 (17.43)	64 45	467	9 41	1:1.77
T-5	Ridomil Mancozeb (100 ppm Metalaxyl)	89.52	8.56 (17.01)	66.07	4.68	9 43	1:1.75
T-6	Control	73.30	25.23 (30.15)		2.27	4.58	1:0.92
SEm	1 7	-	1.479	-	0.161	-	-
CD	(P = 0.05)	-	4 167	-	0.455	-	

(Figures in parenthesis are angular transformed value)

Table 28. Integrated management of Pythium, Fusarium and Ralstonia of ginger at Raigarh.

Treatment	Average sprouting in rhizome	Survival of rhizome	Percent disease incidence (%)	Average. plot yield (kg)	Projected yield(t/ha)
Mancozeb (0.3%) seed treatment	90.0	58.1	35.44	3 3	6.7
Seed treatment with T. harzianum @ 4 g/kg	90.5	69.5	23.07	3.9	7.7
Rhizome solarization (Solarization of Rhizome solarization in polybags for 2 h before sowing	91.3	66.5	27.55	3 1	6.3
Ridomil Mancozeb (100 ppm metalaxyl)	95.0	74.9	21 15	4.6	9.8
Seed treatment with hot water treatment (51°C for 30 minutes)	89 4	65.9	26.28	3 3	6.6
Control	90 0	46.3	48.55	2.4	4.9
CD (P=0.05)	-	6.04	1 35	0.1	0.8

3 7 4 Survey and monitoring of disease in ginger (final report) (Pundibari, Raigarh)

The survey was conducted in three major blocks of Darjeeling namely, Kalimpong I, Kalimpong II and Kalimbong III (Gorubathan) of West Bengal by Pundibari centre. Among the varieties grown in this area, Gorubathan is most widely cultivated followed by Bhaisi and Nangrey. Disease incidences at different locations were determined auring July to September, 2006. In the survey it was found that Kalimpong III block was the hot soot for bacterial wilt disease of ginger (49.12%). This was followed by Kalimpong I (44.74%) and Kalimpong II (29.37%) block respectively. *Phyllosticta* leaf soot disease of ginger was highest in Kalimpong II block (13.26%) followed by Kalimpong III (10.59%) and Kalimpong I block (3.84%).

Surveys were conducted in Armuda Village of Raigarh district for rhizome rot disease and 42 9% disease incidence was noticed during October. Maximum disease incidence was reported in Padigao village of Pusour developmental block and minimum disease incidence in Samabalpuri village of Raigarh developmental block.

3 8 Management of rhizome rot in ginger (Chintapalle, Sirsi)

The observations on management of rhizome rot in ginger at Chintapalle centre revealed that highest germination (90 13%), more number of tillers (9 91), low disease incidence (6 34 PDI) and highest yield of 2 68 kg per bed when seed material were solarized in polyethylene bags for 30 min and treated with Mancozeb (@ 0 25%) before planting as seed treatment and soil application as drench. The next bet treatment was solarization of seed material in polyethylene bags for 30 min and seed treatment and soil application of *T harzianum* 50 g/l, where in highest germination (83 18%), more number of tillers (9 24), low disease incidence (8 71 PDI) and highest yield of 2 16 kg per bed were recorded. Ginger beds were severely affected by soft rot disease with low germination (56 08%), less number of tillers (6 56), high disease incidence (43 71 PDI) and low yield of 0 56 kg per bed when non solarized and unprotected rhizomes were used for sowing

Rhizome rot was not noticed under Sirsi conditions in any of the treatments both in solarized and non solarized rhizomes *T harzianum* was effective in improving the germination of solarized rhizomes (76 02 %) whereas combination of both *T harzianum* and bacterial consortium (for growth, nematode and *Pythium* suppression) treated rhizomes showed higher per cent germination (76 60%). Mancozeb (@ 0 25%) treated rhizomes of both solarized (80 92 %) and non solarized (2 03 %) gave highest germination. Solarized (66 32%) and non solarized rhizomes (67 60%) without any protection with either bioagents or chemical showed minimum germination. Solarized rhizomes treated with *T harzianum* showed highest tiller production (8 65) followed by solarized rhizomes treated with bacterial consortium (7 75). But the least tiller production (6 78) was recorded in non solarized and unprotected rhizomes. Fresh rhizome yield was maximum (13 65 t/ha) in the solarized rhizomes treated with mancozeb (@ 0 25 %) as rhizome and bed treatment. Solarized rhizomes when treated with combination of bioagents viz. *T harzianum* and bacterial consortium recorded an yield of 11 56 t/ha. *T harzianum* performed better in solarized rhizomes in increasing the yield (11 02 t/ha). Lowest yield was noticed in unprotected rhizomes (control) viz., both in solarized (6 70 t/ha) and non solarized rhizomes (6 29 t/ha)

4. Turmeric

4.1 Genetic Resources

4 1 1 Germplasm collection, characterization and conservation (Coimbatore, Dholi, Jagtial, Kumarganj, Pottangi, Pundibari, Raigarh)

To the existing germplasm of 258 genotypes maintained at Coimbatore, four *Curcuma* species *viz*, *C* zedoara, *C* amada, *C* aromatica and *C* caesia (collected from IISR Calicut), *C* zedoara, Blue zedoara and *C* amada (collected from Kerala Agricultural University, Trivandrum) and two accessions (from Agricultural Research Station, Bhavanisagar) were added during 2007-08. Two hundred and sixty seven accessions were evaluated for yield during the year and the yield ranged from 7 to 22 kg/3m² with a mean of 13 01 kg. The coefficient of variability for yield in the population was 20 20%. The highest yield of 22 kg/3m² was recorded by the accession CL-9. The germplasm maintained at various AICRPS centres are given in Table 29.

Out of ninety germplasm, only fourteen accession namely, RH-7, RH-9/90, RH-12, RH-13/90, RH-14, RH-16, RH-17, RH-24, RH-50, RH-80, RH-403, RH-406, RH-407 and RH-411 gave the maximum yield as compared to check RH-5 and Rajendra Sonia at Dholi centre. Among the fourteen promising accession, RH-80 produced maximum yield (15 63 kg/3m²) which was closely followed by RG-50 (15 kg/3m²)

At present, 273 germplasm collections are being maintained at RARS, Jagtial Lot of variability was observed for growth and yield characters. Variability was also observed for diseases like rhizome rot, Collectrichum and Taphrina leaf blotch. Among all the germplasm lines tested, JTS-10 has given high fresh rhizome yield (29 6 t/ha) followed by CLI-38 (28 7 t/ha)

Kumarganj centre holds 128 accessions of turmeric germplasm. Maximum fresh rhizome yield of 331 0 a/ha was obtained in NDH-79 followed by NDH-49 (321 a/ha), among the 31 early maturing genotypes. Out of 61 medium maturing genotypes, NDH-14 produced maximum fresh rhizome yield of 365 a/ha followed by NDH-18 (340 a/ha). Among 36 late maturing genotypes evaluated for yield NDH 9 recorded highest yield (363 0 a /ha) followed by NDH 8 (331 0 a /ha).

Out of the total 197 turmeric accessions available at Pottangi centre, 173 were evaluated during the year, which consisted of 155 Curcuma longa, 20 C aromatic and 4 C amada Fresh rhizome yield/3 m² ranged from 5 3 kg/3m² to 14 6 kg/3m² in C longa and 32 accessions gave more than 10 kg/3m² yield Tu No-6 (14 6 kg/3m²), PTS-41 (14 0 kg/3 m²), PTS-4 (13 5 kg/3m²), PTS-51 (13 0 kg/3m²) were identified as higher yielders in C aromatica the range in fresh rhizome yield varied from 4 0 kg/3m² to 11 4 kg/3m² and 7 accessions gave more than 7 0 kg/3m² yield and Chaya pasupu-II (11 4 kg/3m²) was identified as a high yielder in C amada types, the yield ranged from 8 60 kg/3m² to 13 0 kg/3m²

Hundred and sixteen germplasm accessions of turmeric were screened for suitable characterization under genetic resource programme at Pundibari centre Germplasm were evaluated systematically and it was found that rhizome yield of individual plant (clump weight) was maximum in TCP-66 (670 67 g) followed by TCP-90 (652 33 g), TCP-11 (523 33 g), TCP-18 (466 00 g), TCP-12 (451 33 g), TCP-34 (430 67 g), TCP-71 (417 00 g), TCP-46 (416 00 g) and TCP-135 (395 67 g) With respect to rhizome yield, a total of 16 genotypes out yielded the local check TCP-2 (32 26 t/ha) TCP-66 (54 43 tons/ha), TCP-90 (47 58 tons/ha each), TCP-49 (42 34 tons/ha) and TCP 67 (41 93 tons/ha), TCP-47 (41 13 tons/ha), TCP-153 (39 92 tons/ha), TCP 93 (39 51 tons/ha), TCP-41 and TCP-135 (36 29 tons/ha) recorded significantly higher rhizome yield

Forty-two germplasm lines were evaluated at Ra garh centre and IT-24 recorded highest yield (15 27 t/ha)

Table 29	Turmeric germplasm	collections in AICRPS centres
----------	--------------------	-------------------------------

	Indig	enous		
Centre	Cultivated	Wild and related sp	Total	
Coimbatore	265	-	265	
Dholi	90	- 2	92	
Jagtiai	273		273	
Kumarganj	128		128	
Pottangi	197		197	
Pundibari	156	14	170	
Raigarh	42		42	
Solan	145	0 (- -	145	
Total	1296	16	1312	

4 2 Coordinated Varietal Trial (CVT)

4 2 1 CVT 2000-Series V (Jagtial, Raigarh)

Out of thirty cultures tested at Jagatial, PTS-15 recorded maximum fresh rhizome yield (25 0 t/ha) followed by IT-1 (24 2 t/ha) in comparison to Duggirala Red check variety (25 5 t/ha). At Raigarh centre TCP-2 recorded the maximum yield. (15 85 t/ha)

4 2 2 CVT- 2004 - series VI

(Chintapalle, Coimbatore, Kumarganj, Pottangi, Pundibari, Raigarh)

Among 13 varieties evaluated at Chintapalle, variety PTS-39 recorded the highest fresh rhizome yield of 19 7 t/ha followed by NDH-9 (16 5 t/ha) whereas IT-2 recorded the lowest fresh rhizome yield of (7 9 t/ha)

Among the twelve accessions evaluated in CVT 2004 series at Coimbatore, the yield ranged from 8 0 kg/plot to 15 0 kg/plot (3m²) Highest yield of 15 0 kg/plot was registered by NDH-9 followed by CL-101 (14 0 kg/plot)

At Kumarganj, highest yield of 316 97 a/ha of fresh rhizome yield was observed in NDH-9 followed by NDH 1 (4312 17a/ha) in the pooled analysis NDH-9 recorded maximum fresh rhizome yield (31 11 t/ha) followed by NDH-18 (30 54 t/ha) and IT-3 (30 14 t/ha) (Table 30)

There was significant difference in fresh rhizomes yield among cultivars which were evaluated at Pottangi centre. Highest fresh rhizome yield was recorded by PTS-39 (27 39 t/ha) followed by PTS-4 (27 29t/ha) with 33.80% increase over check Roma.

In the trial at Pundibari, highest rhizome yield was obtained in IT-2 (32 26 t/ha) followed by PTS-39 (31.71 t/ha) and IT-1 (31 51 t/ha) during 2007-08. Lowest yield was recorded in CL-147 (16.47 t/ha). From pooled data analysis of 2005 – 06, 2006 – 2007 and 2007 – 2008, it was found that the genotype IT-2 showed the highest rhizome yield (27 82 t/ha), followed by TCP-56 (27 73 t/ha), IT-1 (26.48 t/ha) and TCP-11 (25.36 t/ha). But there was no significant difference between these four germplasm regarding fresh rhizome yield.

In the CVT at Raigarh centre, TCP-11 recorded maximum yield (17 48 t/ha)

Table 30. Pooled yield of CVT turmeric at Kumarganj

Entry	2004-05	2005-06	2006-07	2007-08	Mean (t/ha)
IT-1	20.55	16 10	19 96	20 44	19.26
IT-2	17 33	30.51	30.73	21.66	27.39
PTS-34	13 55	26.10	25.53	22 99	22.68
PTS-39	13.88	26 60	26 16	31.66	23 32
TCP-56	12 21	21 07	21.16	32 21	19 02
TCP-82	12.88	19 97	20.16	20.44	18.36
NDH-18	30.66	29.43	30.86	31.00	30 54
TCP-11	26.88	24.43	23.00	22 33	24 32
NDH-9	29.22	31.63	31.96	165.53	31.11
17-3	27.88	21.63	21 83	30 99	30.41
CL-101	13.44	30.50	30.60	25.55	26 38
CL-147	12.77	15.81	16 06	26 66	15.29
NDH-14	26 66	26 08	25 76	29 88	26 15
RH-9/90		04 33	12.76	20.22	12.43
RH-13/90		08.87	14 10	19 77	14.24
Prabha (Check)	28.33	27.77	29.40	26.09	28.84
SEm ±		4.43	1.26		
CD (P=0.05)	2 60	12 51	4.47		
CV%	7.58	32.02	9 21		

4.3 Varietal Evaluation Trial

4.3.1 Comparative yield trial (Jagtial, Pottangi)

Out of 10 promising turmeric cultures tested during 2007-08 at Jagatial, JTS-401 and JTS-402 have recorded high fresh rhizome yield (29 7 t/ha.) followed by JTS-406 (25.1 t/ha), Duggirala Red (24.0 t/ha). The check variety PCT-13 recorded fresh rhizome yield (23 1 t/ha)

There was significant difference in fresh rhizomes yield among cultivars evaluated at Pottangi centre Highest fresh rhizome yield was recorded by PTS-47 (26 75 t/ha) and PTS-39 (26 68t/ha)

4 3 2 Initial evaluation trial (Kumarganj, Pottangi, Pundibari)

Out of 9 promising genotypes tested at Kumarganj, NDH-18 produced maximum fresh rhizome yield of 374 9 q/ha followed by NDH-79 (348 8 a/ha) The yield was comparatively higher than Prabha (319 4 a/ha) used as a check

There was significant difference among the cultivars for fresh rhizome yield at Pottangi centre. Highest fresh rhizome yield was recorded by VK 9 (26 39 t/ha), followed by PTS-3 (25 90 t/ha)

At Pundibari, highest mean values for clump weight/plant was recorded by TCP-57 (437 13 g) while TCP-128-1 showed the lowest values for that trait (181 87 g). In respect to plot yield (kg/3m²) and the projected yield (t/ha), TCP-70 recorded the highest mean values (18 00 kg and 36 29 t/ha, respectively), closely followed by TCP-129 (17 17 kg and 34 61 t/ha, respectively), both the genotypes out yielded TCP-2, the local check

4 4 Quality Evaluation Trial

4 4 1 Quality evaluation of germplasm (Coimbatore)

Twenty six high yielding accessions identified from the trials conducted during 2005-06 and 2006-07 at Coimbatore were evaluated for quality parameters like curcumin content, oleoresin and essential oil. Among the 26 accessions, the curcumin content ranged from 3 0 to 3 5%. The highest curcumin content of 3 5% was recorded by the accession CL-57. Oleoresin content varied from 8 5 to 12 5%. The highest oleoresin content (12 5%) was recorded by CL-219. The essential oil content varied from 2 0 to 4 5% among the accessions. The highest essential oil content (4 5%) was recorded in CL-20.

4 4 2 Impact of environment on quality of turmeric (final report) (Coimbatore)

The trial was laid out with six promising accessions viz., CL-131 (Suguna), CL-40 (JTS 2), CL-133 (Roma), CL-141 (Rajendra sonia), CL-2 (BSR-2) and Acc 360 (IISR Prabha) during 2002-03 to study the role of environmental factors on yield and quality of turmeric. During 2006-07 the yield of various accessions ranged from 8.8 kg/plot (3m²) to 15.4 kg/plot. The highest yield of 15.4 kg/plot was registered in Acc 133 (Roma) followed by BSR-2 (12.2 kg/plot). The curcumin content ranged from 3.2 to 5.2% and highest curcumin content of 5.2% was recorded by Acc 131 (Suguna). Oleoresin content ranged from 8.0 to 10.5% and Acc 131 (Suguna) registered the highest oleoresin content (10.5%). The essential oil content ranged from 3.0 to 3.4% and the highest essential oil content of 3.4% was registered in Acc 151 (IISR Prabha) (Table 31).

Based on the pooled analysis of the data on yield and curcumin content of the six genotypes the results revealed that the yield varied from 21 1t/ha to 28 9t/ha. The highest yield of 28 9t/ha was obtained by the cv BSR 2. Regarding the curcumin content it varied from 4.0 to 4.9%. The highest curcumin content of 4.9% was recorded by the cv. IISR Prabha (Table 32).

Table 31 Impact of environment on quality of turmeric (2006-07) at Coimbatore

Accession	Rhizome weight (g)			Yeild/plot	Curcumin	Oleoresin	Essential
	Mother	Primary	Secondary	(kg/3m2)	(%)	(%)	oil (%)
Acc 131 (Suguna)	90	108 9	141 67	90	5 2	105	3 3
Acc 360 (IISR Prabha)	8 8	72 8	101 1	8 8	40	8 3	3 4
Acc 141 (Raiendra sonia)	118	103 9	161 91	118	3 5	96	3 2
Acc 140 (JTS-2)	112	140 0	125 57	112	4 3	95	3 0
Acc 2 (BSR 2)	122	106 1	220 57	122	3 2	8 0	30
Acc 133 (Roma)	15 4	106 1	178 90	15 4	50	8 5	3 2
CD (P = 0 05)	40 1	160	2 32	17	01	1 3	05

Table 32 Pooled data on yield and curcumin content of the genotypes at Coimbatore

Accession	Yield (t/ha)	Curcumin content (%)
Acc 131 (Suguna)	28 3	4 5
Acc 360 (IISR Prabha)	21 1	4 9
Acc 141 (Rajendra sonia)	23 3	4 0
Acc 140 (JTS 2)	28 3	4 5
Acc 2 (BSR 2)	28 9	4 2
Acc 133 (Roma)	28 0	4 5

4 5 Nutrient Management Trial

4 5 1 Effect of biofertilizer, *Azospirillum* on turmeric (*Dholi, Kumarganj*)

Soil application of inorganic nitrogen (100%) — Azospirillum — 5 t/ha FYM and inorganic nitrogen (75%) — Azospirillum — 5 t/ha FYM were significant regarding number of tillers per plant, number of leaves per plant and yield per plant (kg/3 m^2) as compared to control and other treatments of Azospirillum at Dholi centre—Soil application of inorganic nitrogen (100%) — Azospirillum — 5 t/ha FYM gave maximum number of tillers per plant (6 04), number of leaves per tiller (13 50) and yield (18 88 kg/3 m^2 or 62 92 t/ha) followed by inorganic nitrogen (75%) — Azospirillum — 5 t/ha FYM

Application of 50% recommended dose of inorganic fertilizer (60 40 40 kg NPK/ha) + 50% FYM (10 t/ha) + application of 5 kg/ha of Azospirillum - seed treatment and soil application of *P fluorescens* + *Trichoderma* @ 50 g/3m² produced 347 29 q/ha of fresh rhizome at Kumarganj

4 5 2 Organic farming in turmeric (new)

(Coimbatore, Dholi, Jagtial, Pottangi, Pundibari)

Trial on organic farming in turmeric was laid out for the second year during 2007-08 at Coimbatore. The treatment T_3 (fully inorganic) recorded the highest yield of 15.0 kg/3m² plot followed by T_2 (integrated), which recorded a yield of 11.44 kg/3m² plot. The treatment T_3 (fully organic) recorded a yield of 7.2 kg/3m² plot.

At Dholi, integrated fertilizer management (T_2) (FYM-20t/ha - $/_2$ N, P, K - P-solubilising bacteria, P fluorescens and Trichoderma as seed treatment and soil application (50 g/3m²) with spray of indofil M-45 (0 2%) and malathion (0 1%) for controlling of disease and pest produced the maximum plant height (121 61 cm), number of leaves (10 16) and yield per plot (15 80 kg/3m²) or yield (52 67 t/ha followed by fully organic treatment

At Jagtiai, during 2007-08 among the three treatments, integrated treatment recorded highest rhizome yield (24 8 t/ha) followed by inorganic (22 9 t/ha) whereas, organic treatment recorded 21 2 t/ha

There was no significant difference among different treatments at Pottangi. Highest fresh rhizome yield was obtained T-3 (27 37t/ha) followed by T-2 (21 18 t/ha)

Application of integrated nutrients on turmeric at Pundibari produced highest clump weight of 301 42 g and highest yield of 9 36 kg per plot. The highest oleoresin of 10 8% was produced in turmeric by application of organic nutrients on turmeric.

4 5 3 Effect of organic farming on turmeric (Adaptive Research) (Dholi)

Soil application of inorganic nitrogen (100%) + Azospirillum + 5 t/ha FYM (T_1) and inorganic nitrogen (75%) + Azospirillum - 5 t/ha, FYM (T_2) were found significantly better performance regarding number of tillers per plant, number of leaves per plant and yield per plant or tones per hectare as compared to control (T_8) Soil application of inorganic nitrogen (100%) + Azospirillum + 5 t/ha FYM (T_1) gave the maximum number of tillers per plant (6 04), number of leaves per tiller (13 50) and yield (18 88 kg/3m² and 62 92 t/ha) followed by inorganic nitrogen (75%) + Azospirillum + 5t/ha FYM (T_2)

4 5 4 Efficacy of biocontrol agents for control of rhizome rot of turmeric (Pottangi)

There was no significant difference among different treatments. Highest fresh rhizome yield was obtained in chemical treatment (22 84 t/ha) followed by the treatment with both bio-control agents as soil and seed treatment (21 18 t/ha)

4 5 5 Effect of micronutrients on turmeric (Pottangi, Raigarh)

The effect of micronutrients was evaluated at Raigarh and Pottangi centres. At Raigarh centre, application of zinc sulphate resulted in appreciable improvement in fresh rhizome yield of turmeric. Increasing levels of zinc sulphate also increased the rhizome yield of ginger significantly. Maximum yield of fresh rhizome (22.47 t/ha) was recorded with applications of 0.5% of foliar spray (60.8.90 DAP). The minimum yield of 22.47 t/ha was recorded without zinc application.

Increasing level of boron also increased the yield of turmeric significantly Application of 0 2% foliar spray of borax (60 & 90 DAP) produced maximum yield of 24 06 t/ha. The minimum yield of 24 06 t/ha was recorded without application of Borax.

Application of iron increased the yield of turmeric significantly. Maximum yield was found (24.95 t/ha) which spray of ferrous sulphate 1% foliar spray (60 & 90 DAP) of per spray

The interaction effect between Zn, B and Fe was found significant and maximum yield was found in treatment combinations zinc sulphate spray 0.1% 60 and 90 DAP boron 10 kg/ha at the time of planting and spray ferrous sulphate 0.5% (60 & 90 DAP) (27.91 t/ha) and zinc sulphate spray 0.1% 60 and 90 DAP spray of boron 0.2% at the time of planting and spray ferrous sulphate 0.5% (60 & 90 DAP) (27.51 t/ha) and both the treatments are statistically at par.

At Pottangi there was no significant difference among different treatments. Highest fresh rhizome yield was obtained on application of 25 kg/ha of zinc sulphate and borax as soil dressing and 0.5% foliar spray of iron sulphate at 45 & 60 DAP (23.97t/ha) followed by 25 kg/ha each of zinc sulphate, borax and iron sulphate (23.80 t/ha) as soil dressing.

- 4.6 Disease Management Trial
- 4.6.1 Survey and identification of disease causing organism in turmeric and screening of turmeric germplasm against diseases
 (Coimbatore, Pundibari, Raigarh)

The disease survey was conducted in turmeric growing areas of Coimbatore and Erode district to determine the extent of turmeric diseases during 2007-08. In Coimbatore district, leaf spot intensity was maximum at Boluvampatty (56 PDI); the leaf blotch intensity was maximum at Mathampatti (72 PDI) and the rhizome rot was maximum at Boluvampatty (12.00%). In Erode district, leaf spot intensity was maximum at Uonjalur (48 PDI), leaf blotch at Bhavanisagar (68 PDI) and rhizome rot at Uonjalur (12%). Out of the 265 turmeric germplasm accessions screened for resistance against leaf spot and leaf blotch diseases, the turmeric germplasm accessions viz., CL-1, 2, 3, 6, 14, 22, 25, 31, 32, 33, 53, 54, 148, 153, 230 were resistant to leaf spot (8-10 PDI) and the accessions viz., CL-8, 9, 139, 153, 160 and 161 were resistant (10 PDI) for leaf blotch.

Survey were conducted by Pundibari centre in 2 blocks of Coochbehar and one block of Dinhata of Coochbehar district. Three major diseases were found to be prevalent in this area, namely, leaf blotch of turmeric (*Taphrina* spp.), leaf spot of turmeric (*Colletotrichum* spp.) and rhizome rot. Another leaf spot disease (*Helminthosporium* sp.) was found in the survey. It was observed that leaf blotch disease severity was highest in Coochbehar II block (average 31.92%) followed by Dinahata II block (26.67%) and followed by Coochbehar I block (24.13%). Regarding leaf spot of turmeric it was found that disease severity is highest in Coochbehar II block (average 38.17%) which is followed by Dinhata II block (average 28.33%) and it is followed by Coochbehar I block (average 26.4%). It was also observed that leaf spot disease severity was higher in all the blocks than leaf blotch disease in 2007-08 Among the germplasm TCP-3, 4, 5, 9, 19, 35, 48, 54, 55, 74, 79, 90, 95, 100, 121, 122, 125, 132, were tolerant to leaf blotch disease and TCP-49, 93, 104, 162, 194, were tolerant to leaf spot disease.

At Raigarh centre, TCP-11 was found resistance against *Colletotrichum* leaf spot and *Taphrina* leaf spot. TCP-56 was found resistant to *Colletotrichum* leaf spot. TCP-1, TCP-11, TCP-82, ACC-126, ACC-584, IT-1, IT-2, IT-3 was found resistant to *Taphrina* leaf spot.

4.6.2 Investigation on the casual organism of rhizome rot of turmeric and screening of biocontrol agents for its management (final report)
(Kumarganj)

Investigation on rhizome/soft rot disease was not observed during 2004-07 and maximum fresh rhizome yield of 346.68 a/ha was observed by application of recommended dose of NPK (120:80:80) \pm 10 t/ha of FYM \pm seed treatment of *Trichoderma virida*e and *Pseudomonas florescens* @ 4 g/kg and soil treatment of *T. virida*e and *P. florescens* @ 12.5 and 25 kg/ha as basal and top dressing. Similar trend was observed in four years mean pooled data with an increase in 34.34% fresh rhizome yield over control.

5. Tree Spices

5.1 Genetic Resources

5.1.1 Germplasm collection, characterization, evaluation and conservation of clove, nutmeg and cinnamon

(Dapoli, Pechiparai, Yercaud)

Clove, nutring, cinnamon and cassia are the germplasm of tree spices conserved at various AICRPS centres and the details are given in Table 33.

Clove

At Dapoli, 2 accessions of clove have been maintained and are being evaluated for growth and yield performance. The flowering and fruiting was observed on both the genotypes. IISR Calicut type recorded vigorous growth with maximum plant height of 5.23 m, girth 22.53 cm and dry bud yield of 212.14 g/plant and was found to be promising when compared to the Kallar type. The trial was initiated during 1992 with an objective to collect, maintain, characterize and catalogue the germplasm of clove at Pechiparai. Morphological characteristics, yield and yield attributing traits are being evaluated to identify promising accessions. Among the 14 accessions, SA-13 registered the highest yield of 9.08 kg buds per tree and from the pooled mean of three years yield accessions SA-1, SA-3, SA-12 and SA 13 were identified as promising accessions. These accessions can be forwarded to CVT

Nutmeg

At Pechiparai, this trial was initiated during 1992 with an objective to collect, maintain, characterize and catalogue the germplasm of nutmeg. Morphological, yield attributing traits and yield were recorded in 22 accessions and selections, Sel. 1, Sel. 4 and Sel. 6 were identified as the promising entries. The germplasm of nutmeg, consisting of 97 accessions have been maintained and are being evaluated for growth and yield characters at Dapoli. Evaluation of, eight accessions of nutmeg planted during 1996-97 at Dapoli, showed variations in bearing, nut size and yield. The growth parameters did not differ significantly among the different genotypes. The plant height ranged from 4 to 5 m, the girth 22.44-32 56 cm and the spread 5.61 - 8.94 m. Tree no. 56 of Acc. A-4/22 (250 fruits), tree no. 65 of Acc. 4/12 (145 fruits), tree no. 38 of Acc. bulk (260 fruits) and tree no. 26 of Acc. 9/4 (70 fruits) were found to be promising. Acc.A-9/4 produced large sized fruits.

Cinnamon

This trial was initiated during 1992 with an objective to collect, maintain, characterize and catalogue the germplasm of cinnamon at Pechiparai. Morphological characteristics, yield and yield attributing traits are being evaluated to identify promising accessions. Among the accessions, Sel.65 performed well and gave the bark yield of 469 g of diried bark/tree and leaf yield of 6.3 kg/tree (Table 34). A local collection from Pechiparai recorded a leaf yield of 6.2 kg/tree and bark yield of 464.5 g/tree. The growth parameters did not vary significantly among different genotypes at Dapoli centre. The plant height ranged from 3.36-3.99 m, girth 38.22-47.78 cm, spread 2 03 –3.62 m and the regenerated shoots from 5.00-7.11

Cassia

At Dapoli, the germplasm of cassia consisting of 6 accessions have been maintained and are being evaluated for growth and yield performance. The growth parameters did not vary significantly among different genotypes at Dapoli centre. The plant height ranged from 3.36-3.99 m, girth 10 00-17.25 cm, spread 0.61-1.86 m.

Table 33. Tree spices germplasm collections at AICRPS centres

Crop/Centre	Indigenous/cultivated
Clove	
Dapoli	2
Pechiparai	23
Yercaud	13
Total	38
Nutmeg	
Dapoli	97
Pechiparai	22
Total	119
Cinnamon	
Dapoli	11
Pechiparai	12
Yercaud	16
Cassia	
Dapoli	06
Pechiparai	04
Total	49

Table 34. Growth and yield performance of cinnamon at Pechiparai.

Accession	Tree height(cm)	Rejuvenation growth (120 days)	Stem girth(cm)	Leaf yield (kg/plant)	Bark yield (g/plant)
Sel.5	2.41	0.95	15.3	3.2	208.3
Sel.44	2.42	1.02	14.8	3.5	325.5
Sel.53	2.43	0.98	11.2	3.8	96 4
Sel.63	2.40	1.03	13.6	4.4	232.7
Sel.65	3.32	1.25	23.4	6.3	469.0
Sel.139	2.36	1.18	16.2	3.9	386.3
Sel.203	2.68	1.02	18.5	4.6	162 4
Sel.310	2.72	1.06	16.3	3.8	296 8
Sel.312	2.67	1.19	16.4	4.9	352.3
Konka	2.70	1.17	129	4.5	205.4
Bhavani	2.32	1.16	142	4.3	242 1
Pechiparai local (CV 12)	2.35	1.10	21.6	6.2	464.5
CV (%)	7.14	7.42	9.64	12.20	10.25
SED	0.15	0.12	1.56	0.87	22.45
CD (P=0 05)	0.30	0.20	2.63	1 58	50.93

5.2 Coordinated Varietal Trial (CVT)

5.2.1 CVT-1992 - clove (Pechiparai/Yercaud)

Nine genotypes collected from IISR, Calicut were evaluated at Pechiparal for growth and yield parameters. Among the genotypes SA-3 was found to be promising in terms of yield characters (4.36 kg/tree) (Table 35).

Table 35. Performance of CVT clove accessions at Pechiparai

Accession		Yie	ld/tree		Yield	Per cent
	2005	2006	2007	Pooled mean	(kg/ha)	increase over check
SA-3	0 073	5.10	7.92	4.36	1207.72	58.49
SA-4	0.117	4.32	4.08	2.84	786.68	36.25
SA-5	0.077	4.98	5.60	3.55	983.35	49.03
SA-6	0.098	1.20	4.64	1.98	548.46	8.57
SA- 7	0 159	3.8	4.58	2.85	789.45	36.50
SA-8	0.170	3.37	4.27	2.60	720.20	30 41
SA-9	0.140	3.15	6.15	3.15	872.55	42.57
SA-10	0.122	4.0	5.70	3.27	905.79	44.72
SA-11	0.018	1 80	3 74	1.85	512.45	2.14
SA-12	0.025	3.75	4.32	2.70	747.90	32.93
SED	0.170	1.25	2.32			-
CD(P=0.05)	0.340	2.45	4.95	-		-

5.2.2 CVT 2001- nutmeg (Dapoli, Pechiparai)

The trial on nutmeg was planted during the year 2003-04 at Dapoli centre. There was no significant difference in height, number of branches and spread among the genotypes. The plant height ranged from 0.68 to 1.52 m, girth from 4.83 to 7.83 cm., and the spread from 0.30 to 0.93 m. Six accessions collected from IISR, Calicut were evaluated along with a local check at Pechiparai center. Among the accessions A9/150 recorded highest plant height (91.71 cm),

5.2.3. CVT 2001 - cassia (*Pechiparai*)

Among the four selections, D3 was found to be promising with a dry leaf yield of 349.8 g/tree at Pechiparai centre.

5.3 Propagation/Multiplication Trial

5.3.1 Soft wood grafting in clove (Dapoli)

The propagation trial on softwood grafting of clove on different species of jamun rootstock did not show any success. This might be due to incompatibility of rootstock.

5.4 Disease Management Trial

5.4.1 Survey for disease incidence in tree spices (final report) (Dapoli, Pechiparai)

Nutmea

The shot hole disease (Colletotrichum gloeosporioides) was observed in all the orchards visited. Incidence of shot hole was trace to low (up to 10%) The incidence of fruit rot (Botriodiplodia theobromae) recorded in few orchards was at low level. Dieback or sudden wilt of branches was observed in all theorchards visited. The incidence of the disease was at low level except in Ratnagiri district.

Cinnamon

In all the seven orchards visited low incidence (<10%) of leaf blight, leaf spot and pink disease were recorded during 2001-2002 to 2006-07. Low incidence (<10%) of leaf blight, leaf spot was recorded in Raigad, Ratnagiri and Sindhudurg districts. Low incidence of pink disease was recorded in Raigad, Ratnagiri whereas in Sindhudurg no incidence of pink disease was observed during 2001-2002 to 2006-07.

Clove

In all five orchards visited, leaf rot, leaf spot and dieback of branches were found to be the most common diseases. Among these diseases, leaf rot disease was moderate in Raigad, Ratnagiri and Sindhudurg districts whereas leaf spot and dieback were at low level. Incidence of leaf rot was moderate (11 to 30 %) throughout the period of survey.

At Pechiparai, the disease incidence was found to be high during October toNovember. The key factors influencing the spread of the disease were found to the well-distributed rainfall with RH 89-92% and a temperature of 22.53° C -30.50° C. Among the different plant products evaluated, Lawsonia leaf extract (5.0%) was effective and recorded 60% reduction of leafspot. The effective bioagents *P. fluorescens* (Pf_{ppg}) and Pf₁) were tested for their efficacy under *in vitro* conditions. Among them *P. fluorescens* (Pf_{ppg}) was effective and recorded a inhibition zone of 27.00 mm. The combination of Pf_(ppg) with Lawsonia sp. extract recorded lowest disease incidence of 13.38 per cent and a cost benefit ratio of 1:2.97 (Table 36).

Table 36. Biocontrol efficacy of antagonists and plant extracts in controlling leaf spot disease of clove

	200	05	200	6	Yield/	Cost
Treatment	Disease incidence (%)	Reduction over control (%)	Disease incidence (%)	Reduction over control (%)	Plant (kg)	benefit ratio
Pseudomonas fluorescens (Pf _{pps})	12.80 ^{bc}	51.31	14.57 ^{bc}	45.31	2.20	1: 2.42
P. fluorescens (Pf _{pps}) + Lawsonia so.	11. 75 ^b	55.31	13.38 ^{ab}	49.77	2.70	1: 2.97
P. fluorescens (Pf _{PPB}) + Ocimum sanctum	12.29 ^{bc}	53.25	14.18 ^{cbc}	46.77	2.30	1: 2.53
P. fluorescens (Pf,)	15.67°	40.40	17.35 ^d	34.87	2.10	1: 2.32
P. fluorescens (Pf ₁) + Lawsonia sp.	13.92 ^{cd}	47.05	15.43 ^{bcd}	42.08	2.14	1: 2.35
P. fluorescens (Pf,) + Ocimum sanctum	14.20 ^d	45.99	15.98 ^{cd}	40.02	2.14	1: 2.35
Mancozeb (0.2%)	9.86°	62.50	12.26°	53.98	2.00	1: 2.10
Control	26.29		26.64e		1.80	1.1.99
CD (P=0.05)	0.98		1.82	-	-	-

6. Coriander

6.1 Genetic Resources

6.1.1 Germplasm collection, description, characterization, evaluation, conservation and screening against diseases

(Coimbatore, Dholi, Guntur, Hisar, Jagudan, Jobner, Kumarganj)

At Coimbatore centre, 274 accessions of coriander germplasm were screened for productivity and incidence to powdery mildew. Powdery mildew was noticed in all the accessions. The PDI ranged from 16 to 64 and six accessions (CS-63, CS-75, CS-142, CS-205, CS-211 and CS-233) recorded a minimum intensity of 16 PDI with a yield of 950 kg/ha. Sixteen accessions (CS-52, CS-58, CS-71, CS-73, CS-107, CS-115, CS-174, CS-184, CS-199, CS-224, CS-225, CS-231, CS-237, CS-253, CS-256 and CS-266) recorded a disease intensity of 18 PDI with a yield of 850 kg/ha. Accessions CS-45, CS-52 and CS-58 registered a yield of 2.3 kg, 2.2 kg and 2.1 kg/20m² respectively and a disease intensity of 18 PDI for powdery mildew.

Among one hundred germplasm evaluated at Dholi centre, twelve accessions namely, RD-151, DH-115, JCO-125, JCO-102, JCO-360, JCR-340, ICS-2, RD-366, RD-380, RD-385, JCO-130 and UD-73 gave the maximum yield as compared to check variety, Rajendra Swati and Pant Haritima. Among the promising accession RD-154 produced maximum yield 1.10 kg/4.8 m²) followed by DH-115 and JCO-125 (1.05 kg/4.8 m²).

One hundred and twenty six entries were evaluated at Guntur centre. Among the entries evaluated, LCC-201 recorded highest yield (single plant yield-3.26 g) followed by LCC-210 (3.16 g), LCC-149 (3.07 g) and LCC-138 (3.03 g) which was significantly superior to checks Sindhu (1.97 g), Sadhana (2.1 g), Swathi (1.54 g), Sudha (1.62 g) and Local (1.64 g). Sixty-three germplasm lines were collected during the period.

Among the 148 accessions of coronder evaluated at Hisar centre, using Hisar Anand, Narnaul Selection and Pant Haritima as checks the mean seed ranged from 180 g (DH-350) to 560 g (DH-224). Forty-two lines gave higher seed yield than the highest yielding check, Hisar Anand. The most promising lines for seed yield were DH-221, DH-222, DH-224, DH-228, DH-229, DH-236, DH-239, DH-278, DH-284, DH-285, DH-335 and DH-346.

During the year 96 entries were raised and evaluated with GCori-1 and GCori-2 as checks for different yield attributes at Jagudan centre. Among them seven entries namely, JCr-372, EC-363574, 363971, Lam-45, Egyptian, Lam-23 and Lam-73 were dwarf types (<68 cm plant height) and six entries viz. JCr-392, 342, 256, EC-363980, JCr-372 and JCr-308 had good branches (>6 branches per plant). Twelve entries (JCr-392, EC-350691, Lam-4, UD-290, Russian, EC-363974, JCr-393, EC-363980, Lam-5, EC-350690, JCr-375 and JCr-342) had > than 21 umbels per plant and seven entries (JCr-333, 377, UD-51, JCr-379, 340, 344 and JCr-342) recorded equal or more than 7 umbellate per umbel. Nine entries namely, JCr-360, Lam-87, EC-363980, JCr-381, Lam-6, JCr-387, 402, Australian and EC-363972 were identified as early maturing types (d" 110 days) Entries Lam-4, JCr-392, 401, Dhana-98, EC-343370, JCr-350, 690, Russian were identified as high yielders with

more than 2330 kg/ha grain yield. During the year 41(39 + 2) entries were screened for the resistance against powdery mildew disease (PM)under natural condition at Jagudan. The incidence of PM ranged from 15 to 50% None of the entries were found resistant against the disease. The minimum incidence was noticed in JCr-403 (15%) followed by GCr-1 (20%).

Out of 213 accessions, 25 accessions yielded better than best check variety, RCr-41 at Jobner. Some of the promising accessions identified on the basis of yield per plant were UD-374-2, Merigold-6, DH-38-I, UD-21-I, UD-82, Dipchar, UD-21-III, UD-73, UD-417, UD-406, Peempoda, UD-744, Jhola-2-2, UD-91 and UD-340 Twenty three entries which were short listed for powdery mildew from previous year's at Jobner were screened against powdery mildew disease under natural condition. The disease incidence ranged from 30 to 60%. None of the entries was found resistant to the disease. The minimum incidence was noticed in JCr-328, JCr-360, UD-290, DH-221, DH-231 and NDCor-29 (30%) and followed by DH-228 and DH-239 (35%).

Maximum yield of 17.5 q/ha was obtained with NDCor- 2 over check of K.sel (16.2 q/ha) and Hisar Anand (11.2 q/ha) at Kumarganj. The germplasm of coriander conserved at various AICRPS centres are presented in Table 37.

Table 37.	Coriander	germplasm collection at AICRPS centres
-----------	-----------	--

Centre	Indig	genous	Total
	Cultivated	Wild and related sp.	
Coimbatore	274	-	274
Dholi	97	3	100
Guntur	248		248
Hisar	251		251
Jagudan	86	22 (Exotic)	108
Jobner	753	102	855
Kumarganj	75	-	75
Total	1784	127	1911

6.2 Coordinated Varietal Trial

6.2.1 CVT 2001 Series V (final report) (Coimbatore,)

Nineteen accessions collected from various coordinating centres along with the local check CO-3 and CO (CR)-4 were evaluated for the growth and yield characters during 2007-08 at Coimbatore centre. These accessions were obtained from Hisar (UD-206, UD-242, Hissar Anand), Kumarganj (K.sel, ND Cor-2, ND Cor-30), Jagudan (J.Cori-340, J.Cori-375) and Jobner (LCC, UD and RG series). The highest grain yield of 650 kg/ha was recorded by ND Cor-3, UD-728 and UD-797. This was on par with the yield of the local check CO (CR)-4. The pooled mean of the three years 2005-06 to 2007-08 revealed that the cultivar LCC-170 and UD-206 recorded the highest yield of 928.33 kg/ha and 923.33 kg/ha respectively (Table 38).

Table 38. Pooled data on growth and yield performance of CVT coriander

Cultivar/variety		Yield	/ha(kg)		
ounitary tanony	2005-06	2006-07	2007-08	Mean	Mean
K. sel	535	450	600	528.33	
NDCor-2	435	600	550	528.33	
NDCor- 30	715	450	650	605.00	
J.Cor-340	665	450	600	571.66	
J.Cor-375	915	600	600	705.00	
DH -206	800	1420	550	923.33	
DH -242	515	300	450	421.66	
Hisar Anand	515	360	600	491.66	
LCC-212	465	600	500	521.66	
LCC-170	1135	1050	600	928.33	
UD-728	535	700	650	628.33	
UD-796	565	600	400	521.66	
UD-797	600	450	650	566.66	
RG-20	400	450	600	483.33	
RG-435	500	600	450	516.66	
RG-684	535	300	550	461.66	
RG-41	500	600	550	550.00	
RG-436	685	300	550	511 66	
SED				28.07	
C D (P=0.05)				56.94	

6.2.2 CVT 2004 - Production of leafy type coriander during off-season (final report) (Coimbatore, Guntur, Hisar)

At Coimbatore, seven leafy type coriander received from various coordinating centres viz., Hisar (DH-202, DH-228), Guntur (LCC-232, LCC-234) and NRCSS, Ajmer (ACr-250, ACr-256) along with the two varieties of Tamil Nadu Agricultural University (CO-2 and CO-4) were evaluated with the national check Pant Haritma to find its suitability for Tamil Nadu condition. The results of the evaluation conducted during 2005-06 revealed that among the ten types three genotypes viz., DH-228, CO-2 and LCC-234 registered the maximum leaf yield of 3.40,3.32 and 3.30 t/ha respectively. The evaluation of the genotypes during 2006-07 revealed that the yield varied from 1.96 t/ha to 3.40 t/ha. The highest leaf yield of 3.4 t/ha was obtained in DH-202. The leaf yield/ha varied from 2.60 to 3 35 t/ha during 2007-08. The highest leaf yield was recorded by the accession DH-202 (3.35t/ha). The pooled analysis of the nine genotypes along with the check revealed that the leaf yield varied from 2.44 t/ha to 3.18 t/ha. The highest leaf yield of 3.18 t/ha was registered by the cultivar DH-202 followed by the check Pant Haritma (3 15 t/ha) and LCC-234 (3.10 t/ha) (Table 39).

During 2007-08, fourteen entries were evaluated for their performance for leaf yield at Guntur centre. Highest greens yield was recorded in LCC-244 (18.9 t/ha) followed by LCC-233 (18.5 t/ha) and LCC-234 (18.0 t/ha), which were significantly superior to check Local (9.07 t/ha)

At Hisar, significant differences among entries were recorded for days taken to flowering as well as total leaf yield. The variety DH-228 was late in flowering and gave maximum mean leaf yield (3889 kg/ha), which was 72.23% higher over check variety Pant Haritima followed by DH-202 (2775 kg/ha). The entries CO-2, CO-4, LCC-232 and LCC-234 were the earliest and took about 22 to 25 days to flowering/bolting, therefore, did not produce green leaf yield (Table 40).

Table 39. Yield performance of leafy type coriander during off-season at Coimbatore (Pooled analysis 2005 - 2008)

Cultivar/variety		Yield/h	ia (kg)	
	2005-06	2006-07	2007-08	Mean
DH-202	2.80	3.40	3.35	3.18
DH-228	3.40	2.60	2.60	2.87
Acr-250	2.50.	2 90	2.80	2.73
Acr-256	2.40	1.96	2.95	2.44
LCC- 234	3.30	2.90	3.10	3 10
LCC- 232	2.40	3.04	3.15	2.86
Pant Haritma	2.70	3.70	3.05	3.15
CO-2	3.20	2.50	3.10	2.93
CO-4	2.90	2.72	3.25	2.96
SED	0.15	0.18	0.19	0.18
CD (P=0.05)	0.03	0.40	0.40	0.38

Table 40. Performance of leafy type coriander during off-season at Hisar.

Entry	Average		Leaf yield (kg/ha)					
	days to bolting /flowering	2005	2006	2007	Mean	/decrease over check (%)		
ACr-250	30	915	1002	1080	999	-55 76		
ACr-256	32	1650	1337	1250	1412	-37.47		
DH-202	46	2775	2505	3044	2775	22.90		
DH-228	49	3450	4008	4210	3889	72.23		
JCO-377	34	1650	1837	1760	1749	-22 54		
JCO-384	30	1350	1503	1408	1420	-37.11		
Pant Haritima	36	2100	2254	2420	2258	-		
C D (P=0.0 5)	-	185	150	192	-	-		

6 2.3 CVT 2005

(Dholi, Guntur, Hisar, Jagudan, Jobner, Kumarganj, Raigarh)

Among the entries evaluated at Dholi, none of entries and national check was found significantly superior over local check regarding number of branches per plant, number of umbels per plant, number of umbellets per umbel and yield per plot or yield per hectare. However, COR-15, COR-2, COR-14 and COR-43 produced significantly more grain per umbel (42.33, 41.07, 37.47 and 37.27 respectively) as compared to local check Rajendra Swati while entries, COR-4, COR-10, COR-11, COR-12, COR-13, COR-14 and COR-15 were found significantly early maturing as compared to local check.

At Guntur, COR-12 (667 kg/ha), COR-10 (659 kg/ha), and COR-11 (643 kg/ha) recorded high yield, which are significantly superior to checks Sudha (554 kg/ha) Sadhana (413 kg/ha) and local corrander (285 kg/ha)

Significant difference was obtained for all the parameters studied at Hisar centre. Plant height ranged from 75 8 to 115 0, number of branches 7.0 to 10.9, umbels per plant 40 0 to 60 6 and seeds per umbel 23.3 to 43.5. Maximum seed yield (1913 kg/ha) was recorded in COR-5 followed by COR-4 (1825 kg/ha) and COR-2 (1670 kg/ha) (Table 41)

Table 41 Performance of CVT coriander at Hisar

Entry	Plant height (cm)	Branches/ plant	Umbels/ plant	Umbellets/ umbel	Seeds/ umbellet	Seeds/ umbel	Seed yield (kg/ha)
COR-1	91 3	9.8	48.7	60	5.3	30.5	1554
COR-2	87.6	8.7	58 8	5.9	5 4	35 5	1670
COR-3	115.0	8.7	44.0	60	6.8	37.3	1457
COR-4	113.1	10.9	60.0	6.3	7.5	43.5	1825
COR-5	126 5	9.3	60.6	6.2	6.1	36 4	1913
COR-6	81.3	95	47.3	5.7	5.5	31.3	1507
COR-7	110.4	8.9	45.3	5.8	6.1	35.4	1563
COR-8	92 0	7 4	44.8	5.2	4.9	25.2	1458
COR-9	78 3	7 7	41 1	49	5 1	24 7	1298
COR-10	75.8	7.4	43.4	50	50	23.3	1057
COR-11	75.8	70	40 0	5.0	49	24 1	1034
COR-12	80.7	95	52 1	5 7	5.5	29.9	1590
COR-17	120 6	104	58.7	64	5.5	37 2	1650
CD = P = 0	0 05) 03.4	0.4	3.3	0.4	0.6	3.7	112

Though the yield differences among the entries were significant at Jagudan centre, none of the entries were superior over check COR-11 gave the highest yield (1408 kg/ha), which was 16 99% higher over check GCori-2 and was on par with the check.

At Jobner, significant differences were observed for all the characters including seed yield. The seed yield ranged from 208 33 to 1078 70 kg/ha. Of the twenty one entries evaluated, COR-1 recorded maximum seed yield of 1078.70 kg/ha followed by COR-9 (1023 70 kg/ha), RD-154 (907 41kg/ha), COR-15 ana COR-8 (875 00 kg/ha) and COR-2 (847 22 kg/ha), while lowest seed yield of 208.33 kg/ha was recorded in COR-11

Maximum seed yield in coriander was observed in COR-9 (19.90 a/ha) followed by 19 37 q/ha seed yield in Cor-8 at Kumarganj.

At Raigarh, COR-3 (8.78 a/ha), COR-5 and COR-2 (8.54 a/ha) were identified as high yielders.

6.3 Coordinated Varietal Trial

6.3.1 Initial evaluation trial (Guntur, Hisar, Jagudan, Jobner, Kumarganj)

Among the twelve entries tested LCC-240 recorded highest yield of 691 kg/ha followed by LCC-237 with 681 kg/ha at Guntur. LCC-240 recorded 25.2% increase in yield over check where as LCC-237 recorded 23.3% increase in yield over check indicating the superiority of these lines. The three years pooled analysis indicated that LCC-237 (791 kg/ha) and LCC-236 (773 kg/ha) recorded significantly higher yield than the check Sadhana (617 kg/ha). Both the entries had higher oil content (LCC-237 (0.39%) and LCC-236 (0.35%) than the check Sadhana (Table 42). These entries may be promoted to coordinated varietal trials for multilocation testing.

Table 42. Yield and quality performance of IET (pooled data) coriander at Guntur

Entry	No. of umbellets / umbel	Days to maturity	Test weight (g)	Oil (%)	Oil yield (I/ha)	Yield /ha (kg)	Increase /decrease over check (%)
LCC-134	5.1	85.0	15.53	0.32	2 41	666	7.9
LCC-214	5.2	85.8	15.79	0.42	3 25	678	99
LCC-220	5.0	91.0	14.69	0.40	2.63	607	-1.6
LCC-228	5.5	87.1	16.32	0.43	2.85	697	13.0
LCC-229	5.2	89.7	15.79	0.32	2.04	588	-4.7
LCC-234	4.8	89.2	14.29	0.37	1.85	525	-14.8
LCC-236	5.2	88.7	16.86	0.35	2.65	773	25.4
LCC-237	5.3	86.9	15.51	0.39	3 1 1	791	28.3
LCC-240	5.3	87.2	15.89	0.38	2 58	695	12.7
LCC-243	5.1	91.2	13.96	0.35	1.74	500	-19.0
Saanana (C)	5.0	88.1	13,43	0.33	2.06	617	
Swathı (C)	4.7	85.0	15.62	0.25	1.53	586	-5.1
CD (P=0.05)	NS	1.9	1.73	-	-	136	
CV (%)	8.7	1.3	6.68	_		12	

At Hisar, DH-220 and DH-233 gave significantly better yield over check with 27.67 and 32.05% increase in yield, respectively. Hence, both these lines would be included in coordinated varietal trial for further evaluation.

Yield for the entries tested at Jagudan were non significant. However, an entry JCr-383 gave 1430 kg/ha yield, which was 10 57 per cent higher over check. The pooled data for three years showed nonsignificant difference for yield. However, an entry JCr-383 gave high yield (1439 kg/ha), which was 12.95% higher over check.

At Jobner, ten entries were evaluated and the analysis of variance revealed significant differences among the entries for all the traits including seed yield. The seed yield ranged from 333-33-to-930-56 kg/ha. Of the ten entries evaluated, UD-475 recorded maximum seed yield of 930-56 kg/ha followed by UD-20-130-278 (784-72 kg/ha), RCr-435 check (625 kg/ha), RCr-436 check (604-17 kg/ha), UD-600 (506-27 kg/ha) and Merigold-6 (493-06 kg/ha), while lowest yield of 333-33 kg/ha was recorded in local check. Mean performance of the entries evaluated in IET over 2004-05 to 2006-07 revealed superior performance of UD-475 yielding 1249-23 kg/ha followed by UD-20-130-278 (1158-95 kg/ha), RCr-435 check (967-59 kg/ha), Merigold-6 (853-40 kg/ha) and RCr-436 check (846-07 kg/ha), while lowest mean yield of 618-05 kg/ha was recorded in local check (Table 43)

Highest seed yield of 17 7 a/ha was observed in NDCor-2 out of ten entries tested at Kumarganj, followed by seed yield of 17 1-17 2 a/ha produced by NDCor-30 and NDCor-49 during the year 2007-08

Table 43 Yield performance of IET coriander entries at Jobner

Entry		Seed yield	(kg/ha)		Increase/
	2004-05	2005-06	2006-07	Mean	decrease over check (%)
UD-475	1576 39	1240 74	930 56	1249 23	29 11
UD-20-130-278	1645 83	1046 30	784 72	1158 95	19 78
RCr-435 Check	1444 44	833 33	625 00	967 59	Best check
Merigold-6	1409 72	657 41	493 06	853 40	-11 80
RCr-436 Check	1128 47	805 56	604 17	846 07	-12 56
UD-630	1434 03	611 11	458 33	834 49	-13 76
UD-600	1239 58	675 00	506 25	806 94	-16 60
UD-627	1256 94	490 74	368 06	705 25	-27 11
UD-707	1017 36	527 78	395 83	646 99	-33 13
Local Check	1076 39	444 44	333 33	618 05	-36 12
CD (P=0 05)	178 70	174 11	130 58		
CV (%)	7 88	13 85	13 85		

6 4 Quality evaluation trial

6 4 1 Quality evaluation in coriander (Jobner)

Twenty one entries of coriander under CVT were tested for volatile oil content during Rabi 2006-07. The volatile oil content in the entries of CVT ranged from 0.20% to 0.43%. The maximum volatile oil of 0.43% was observed in COR-3 and COR-2 followed by 0.40% in RCr-435 check, RCr-436 check, RD-154, RD-366, COR-17, COR-12, CO-1, COR-4, COR-5, COR-6, COR-8 and COR-9 while minimum of 0.20% in COR-16. The entry COR-1 ranked first in terms of volatile oil yield (4.31 l/ha) followed by COR 9 (4.09 l/ha), COR-2 (3.67 l/ha), RD-154 (3.63 l/ha) and COR-8 (3.50 l/ha). While lowest volatile oil yield of 0.69 l/ha was recorded in COR-11. Ten entries of coriander under IET were tested for volatile oil content during Rabi 2006-07.

The volatile oil content in the entries of IET ranged from 0 20 to 0 40%. The maximum volatile oil of 0 40% was observed in UD-475, Merigold-6 and UD_{5}^{2} 20-130-278 followed by 0 37% in RCr-435 check and minimum

of 0 20% in UD-627 and UD-630. Highest volatile oil yield was recorded in UD-475 (3.72 I/ha) followed by UD-20-130-278 (3.14 I/ha) and RCr-435 check (2 31 I/ha) and minimum was recorded in UD-627 (0.74 I/ha). On the basis of three years data (2004-05, 2005-06 and 2006-07) (Table 44), the highest mean volatile oil content of 0.43% was recorded in UD-475 and Merigold-6 followed by 0.42% in UD-20-130-278 and 0.39% in RCr-435 check, whereas minimum 0.31% was recorded in UD-630. The maximum mean volatile oil yield in terms of litre per ha was observed in UD-475 (5.37 I/ha) followed by UD-20-130-278 (4.87 I/ha) and RCr-135 check (3 77 I/ha) and minimum in local (2.04 I/ha).

Table 44. Volatile oil content of IET coriander (2004-05 to 2006-07)

Entry	Mean seed		Volatile oi	l (%)		Mean volatile	
	yield (kg/ha)	2004-05	2005-06	2006-07	Mean	oil yield (I/ha)	
UD-475	1249.23	0.43	0.47	0.40	0.43	5.37	
UD-600	806.94	0.33	0.40	0.30	0.34	2 74	
UD-627	705.25	0.35	0.40	0.20	0.32	2.26	
UD-630	834.49	0.33	0.40	0.20	0.31	2.59	
UD-707	646.99	0.40	0.33	0.22	0.32	2.07	
Merigold-6	853.40	0.47	0.43	0.40	0.43	3.67	
UD-20-130-278	1158.95	0.43	0.43	0.40	0.42	4.87	
RCr-435 Check	967.59	0 37	0.43	0.37	0.39	3.77	
RCr-436 Check	846.07	0.30	0.40	0.33	0.34	2.88	
Local Check	618.05	0.25	0.37	0.37	0.33	2.04	
CD (P=0.05)		0.08	0.08	0.04			
CV (%)		13.23	1.15	7.59			

6.5 Nutrient Management Trial

6.5.1 Effect of biofertilizer, *Azospirillum* on coriander (*Dholi*)

No significant effect was found regarding height of the plant, number of branches per plant and number of umbellets per umbel at Dholi centre. Application of inorganic nitrogen 100% + Azospirillum + 5 t/ha FYM (T₂), inorganic nitrogen 75% + Azospirillum + 5 t/ha FYM (T₂) and inorganic nitrogen 50% + Azospirillum + 5 t/ ha FYM (T₃) gave significantly more number of umbels per plant (70.13, 68.33 & 66.80 respectively) as compared to control (49.93). Application of inorganic nitrogen 100% + Azospirillum + 5 t/ha FYM (T₃) inorganic nitrogen 75% + Azospirillum + 5t/ha FYM (T₂), inorganic nitrogen 50% + Azospirillum + 5t/ha FYM (T3), FYM-10 t/ha + Azospirillum and FYM-10t/ha alone (T7) produced significantly more yield (2.05, 192, 1.88, 183 & 1.81 t/ha respectively) as compared to control (1.35 t/ha) while inorganic nitrogen 100% + Azospirillum + 5t/ha FYM (T₃), inorganic nitrogen 75% + Azospirillum + 5 t/ha FYM (T₃), inorganic nitrogen 50% + Azospirillum + 5 t/ha FYM (T₃) and 100% inorganic nitrogen (T₈) gave significantly more number of grain per umbel (45.00, 41.33, 39.53 & 37.93 respectively) as compared to control (29.47). Among the treatment inorganic nitrogen 100% + Azospirillum + 5t/ha FYM produced maximum number of umbels per plant (70.13), number of grains per umbel (45.00) and yield per plot (0.98 kg/4.8 m²) or yield (2.05 t/ha) followed by inorganic nitrogen 75% + Azospirillum + 5t/ha FYM.

6 5 2 Effect of bioregulators on coriander (Jobner)

At Jobner the experiment consisting of thirteen treatment combinations comprising 4 bio-regulators viz, triacontanol 0.5 ml/l, triacontanol 1.0 ml/l, NAA 50 ppm and water spray, and 3 levels of spray viz, one (40 DAS) two (40 and 60 DAS) and three (40, 60 and 80 DAS) along with one absolute control. On the basis of three years data application of NAA 50 ppm resulted in significantly higher seed yield of coriander and net returns but it was at par with triacontanol 1.0 ml/l (Table 45). Triacontanol 1.0 ml/l was also significantly superior over triacontanol 0.5 ml/l and water spray. Data further indicated that with the increase in number of sprays, the seed yield and net returns also showed increasing trend but the significant response was observed only up to 2 sprays i e. at 40 and 60 DAS. Two foliar sprays of 50 ppm NAA or 1.0 ml/l triacontanol at 40 and 60 DAS could be recommended for obtaining higher seed yield as well as net returns from coriander crop

Table 45 Effect of bioregulators on seed yield of coriander at Jobner

Treatment		Seed yield	Net	BC			
	2004-05	2005-06	2006-07	Mean	Returns (Rs/ha)	ratio	
Bioregulators							
Triacontanol @ 0 5 ml/l	1475	1379	1007	1287	17205	1 15	
Triacontanol @ 1 0 ml/l	1694	1562	1074	1443	20955	1 39	
NAA @ 50 ppm	1728	1585	1104	1472	21804	1 45	
Water spray	1409	1246	901	1185	14805	1 00	
CD (P = 0.05)	79	77	117	51	857	0 07	
Sprays							
One (40 DAS)	1460	1358	920	1246	16412	1 11	
Two (40 & 60 DAS)	1603	1470	1063	1379	19498	1 30	
Three (40, 60 & 80 DAS)	1668	1501	1081	1417	20210	1 33	
CD (P = 0.05)	68	67	102	44	742	0 06	
Control v/s Rest							
Control	1264	1160	815	1080	12500	0 86	
Rest	1577	1443	1021	1347	18698	1 25	
CD (P = 0 05)	101	94	144	63	1050	0 09	

Common cost of cut vation Rs 14500/na Cost of corianaer seea Rs 25/kg Cost of triacontano, Rs 300/litre, Cost of NAA Rs 350/100 g, Cost of one so ay Rs 160/na

6 5 3 Role of rhizobacteria in growth promotion of coriander (Coimbatore, Guntur, Hisar, Jagudan)

At Coimbatore, an experiment with two types of rhizobacteria (FK-14 & FL-18) and different methods of their application was tested on coriander to evaluate the effect on growth promotion of coriander Among the eight treatments, treatment T_3 (rhizobacteria FL-18 as seed-treatment) recorded maximum yield (500 kg/ha) followed by treatment T_2 (rhizobacteria FK-14 (seed treatment + soil application)) that recorded a yield of 450 kg/ha

Among the treatments evaluated at Guntur, T 6 (seed treatment + soil application with FK-14 + FL 18) recorded maximum yield (583 kg/ha) followed by T 2 (seed treatment - soil application with FK-14) (570 kg/ha) which was on par and significantly superior to control (402 kg/ha)

At Hisar, among the treatments, maximum seed yield (1779 kg/ha) was recorded with the application of rhizobacteria FL 18 (seed treatment + soil application) followed by *Trichoderma* MTCC 5179 (1611kg/ha) (Table 46)

At Jagudan, the effect of rhizobacteria was found to be non significant on ancillary characters yield as well as auality of coriander. However, seed inoculation of FL-18 was found beneficial for improving yield

Table 46 Effect of rhizobacteria on growth and seed yield of coriander at Hisar

Treatment	Plant height (cm)	Branches /plant	Umbels /plant	Umbellets /umbel	Seeds/ umbel	Seed yield (kg/ha)
Rhizobacteria FK-14 (seed treatment)	65 0	65	35 5	4 5	28 4	1395
Rhizobacteria FK 14 (seed treatment soil application)	65 9	6 4	35 7	50	32 3	1564
Rhizobacteria FL-18 (seed treatment)	68 2	65	39 6	5 2	29 1	1427
Rhizobacteria FL-18 (seed treatment +- soil application)	69 5	68	45 9	5 7	35 0	1779
Rhizobacteria FK-14 + FL-18 (seed treatment)	69 8	69	36 4	5 4	31 1	1511
Rhizobacteria FK-14 + FL-18 (seed + soil treatment)	72 2	68	40 3	5 1	31 9	1604
Trichoderma MTCC 5179 (Recommended dose)	70 1	66	39 3	50	34 1	1611
Control	61 5	60	39 4	50	29 3	1493
C D (P=0 05)	4 5	0.5	28	0.5	3 5	186

6 5 4 Identification of drought and alkalinity tolerance source in coriander (Coimbatore, Guntur, Kumarganj)

A study on identification of drought tolerance source in corrander was conducted during 2007 08 at Coimbatore Among the fifty high yielding genotypes evaluated for drought tolerance, the genotype CS-127 recorded the highest yield of 305 90 g and 270 7 g of grain yield /plot (5 m^2) when they were subjected to drought during the vegetative phase and flowering stage respectively. The same genotypes recorded a highest grain yield of 454 70 g/plot under control

Among the entries evaluated for drought tolerance at Guntur, LCC-200 (529 kg/ha) followed by LCC-187 (515 kg/ha) recorded significantly higher yields over best check Sadhana (414 kg/ha). The data on physiological parameters indicated that LCC-187 (755), LCC-184 (74.9) recorded high RWC %, where as LCC-219 and LCC-229 has high SLW (3.85) LCC-134 (535) and LCC-143 (50.3) recorded high CSI. LCC-200 (383) and LCC 187 (344) registered high SLA

At Jobner, twenty entries of coriander were evaluated under normal and limited moisture condition during Rabi 2006-07. Stress susceptible index (SSI) for seed yield of coriander genotypes revealed that thirteen genotype viz., local, RCr-480, Hisar Anand, ICS-1, UD-728, K-Selection, NDCor-2, RD-154, RCr-20, JCor-375, RCr-684, DH-206 and LCC-17 had SSI value < 1 and may be termed as tolerant genotypes, while rest of the genotypes had SSI value > 1 and termed as susceptible genotype. Thus, on the basis of mean performance of SSI values genotype viz., UD-728, RCr-480 and RCr-435 were tolerant to limited moisture condition. On the basis of values of stress tolerance (TOL) and stress tolerance index (STI), genotype RCr-480 and Hisar Anand were ranked as genotype which were tolerant to limited moisture condition.

6.6 Disease Management Trial

6.6.1 Management of powdery mildew and stem gall in coriander (Coimbatore, Dholi, Jagudan, Jobner, Kumarganj, Raigarh)

A field experiment was conducted during 2007-08 at Colmbatore, to test the efficacy of bacterial biocontrol agents and *Trichoderma* along with chemical check as talc based and liquid formulation against stem gall and powdery mildew diseases. The results revealed that seed treatment with *Pseudomonas fluorescens* (IISR-6) at the rate of 10 g/kg of seed followed by foliar application at 10° cfu on 60 days after sowing recorded the minimum powdery mildew incidence of 30.00 PDI when compared to the untreated control (60.00 PDI). The next best treatment was soil application of *Bacillus subtilis* @ 10° cfu + spray with *B. subtilis* @ 10° cfu after 60 days which recorded the disease incidence of 32 PDI. Among the nine treatments, *P. fluorescens* (IISR-6) applied plots recorded the maximum yield of 690 kg/ha with maximum cost benefit ratio of 1:2.3 as against control (480 kg/ha with 1:1.6). There was no stem gall disease symptom in the entire experimental plots. The pooled mean analysis (2005-06 to 2007-08) revealed that seed treatment with *Pseudomonas* (IISR-6 Isolate) + foliar spraying at 60 DAS was found to be effective in reducing the powdery mildew intensity (24 PDI) and recorded the maximum yield of 724.44 kg/ha with CB ratio of 1:2.4. This treatment was on par with *B. subtilis* applied plots.

In the experiment on management of stem gall and powdery mildew at Dholi centre, the lowest incidence of stem gall disease (16.74%), highest yield (1.40 t/ha), decrease in disease incidence over control (78.60%), increase in yield over control (97.18%) were recorded in treatment $\{T_i\}$ *i.e.*, soil solarization + soil application of *Trichoderma* (1 kg/plot) + spray with tridemorph (Calixin) 0.1% after 60 days of sowing. Second highest yield (1.30 t/ha) and consequently increase in yield over control (83.10%) was in treatment $\{T_k\}$ *i.e.*, seed treatment, soil drench with tridemorph (Calixin) 0.1% + spray with Calixin 0.1% after 60 days whereas, second highest decrease in PDI over control (53.02%) was noted in treatment $\{T_k\}$ *i.e.*, carbenedazim as soil drench and spray (0.1%). Treatment T_i proved to be the best treatment with respect to all the recorded parameters. No incidence of powdery mildew was recorded at any stage of the crop.

At Jobner among the eight treatments tested, minimum powdery mildew (25.83%) with maximum seed yield of 668 kg/ha was recorded in the treatment soil solarisation + soil application of *Trichoderma* + spray with calixin which was closely followed by seed treatment, soil drench + spray with calixin (27.50% with seed yield 648 kg/ha) and spray with wettable sulphur (49.17% with seed yield 639 kg/ha). Maximum disease incidence (85.0%) was observed in control. Stem gall disease was not observed in any of the treatments.

At Kumarganj, maximum control of stem gall disease (69.35%) was possible by drenching the soil \div foliar spray of carbendazim (0.2%) after 60 DAS (T_s). Lowest incidence of powdery mildew disease was observed in the treatment foliar spray of wettable sulphur (T_s) over control during the year 2007-08 and maximum yield in T_s treatment. Study of four years pooled data also showed similar observation in disease control. Maximum seed yield was registered in the treatment soil application of B. subtilis 10^8 CFU and spray with B. subtilis after 60 DAS, showing 45.77% increase in yield over control.

At Raigarh, minimum disease intensity of powdery (19.1%) were observed in treatment T5 (carbendazim (0.1%) as soil drench and spray) followed by T6 (spray with wettable sulphur 0.2%) (19.76%). Maximum yield q/ha was found in same treatment (8.0 q/ha) and 8.1 q/ha respectively. Both the treatments were statistically at par regarding disease intensity and yield. Maximum disease intensity (72.16%) and minimum plot yield/kg (3.1) was found in control plant. Minimum disease intensity (10.7%) was observed in treatment T4 (seed treatment, soil drench tridemorph 0.1% + spray with calixin 0.1% after 60 days) followed by treatment T1 (soil solarization + soil application of *Trichoderma* (1 kg/plot) + spray with tridemorph (calixin) 0.1% after 60 days of sowing) (10.77%) and treatment T5 (11.7%) with a maximum yield of 8.5, 7.7, and 7.2 q/ha respectively. Maximum disease intensity (43.72) and minimum yield 3.9 q/ha was in control.

7. Cumin

7.1 Genetic Resources

7.1.1 Germplasm collection, characterization, evaluation, conservation and screening against diseases

(Jagudan, Jobner)

Two hundred and fourteen genotypes of cumin were compared with three checks i.e. GC-1, GC-2, GC-3 and GC-4 during rabi season 2007-08. Among them seven entries were identified as tall type. Four entries recorded more than 6 umbellates/umbel. Eight entries were identified for the traits more seeds per umbel i.e. e" 36 seed per umbel. Five entries observed more or less early maturity (d" 101 days). Ten entries isolated as high yielders recorded more than 2257 kg/ha grain yield (yield kg/ha is calculated on basis of per plant yield). The details on quantitative characters are presented in Table 47. Forly three entries were screened for the resistance against blight disease. None of the entries was found free from blight disease incidence. The minimum incidence was noticed in GC-2 (check) & GC-4 (check) (60%) followed by RZ-19 (65%). The blight incidence ranged from 60 to 95%. All other entries were highly susceptible. The incidence of powdery mildew ranged from 10 to 75%. Two hundred and eighty one indigenous and 20 exotic germplasm of cumin are maintained at Jobner centre. The germplasm of cumin maintained at Jobner and Jagudan centres are given in Table 48.

Table 47. Promising accessions of cumin germplasm at Jagudan

Character	Range	GC-4 (Check)	Desirable values	No. of entries	Promising accessions
Plant height (cm) (Tall)*	25.7-46	32.7	>42	7	JC-2002-4, 96-42, 95-75, 99-39, 9936, 99-31, 95-136
Number of branches/plant (More branches)*	3-7.7	5.7	>5.5	9	JC-96-40, 99-39, 96-36, GC-4, JC-2002-37, 2000- 27, 99-43, 99-38, 96-37
Number of umbels/plant (More umbels)*	4-17.3	16.3	>16	6	JC-95-120, 95-100, GC-4, JC-2000-21, 99-3, 96-40
Number of umbellates/umbel (More umbellates)*	4-7	6	>6	4	JC-96-36, 96-53, 95-116, White flower
Number of seeds/ umbel (More seeds)*	15.3-42.7	34	>36	8	GC-2, JC-96-27, 99-43, 99-1, 95-71, 2000-27, GC-1, JC-95-120

Maturity days 2002-36, 94-61 (Early maturity)*	99-117	117	>101	5	JC-94-70, 94-262, 96-54,
Grain yield (g plant ') (High yield)*	0.17-3.23	2.07	>2.1	10	JC-2002-31, 2000-66, 2002-37, 99-3, 95-125, GC-1, JC-95-75, 2002-24, 2000-62, 96-40
Grain yield (kg/ha) (High yield)*	179-3475	2221	>2257	10	As above

^{* *}rait for which selected

Table 48. Cumin germplasm collection under AICRPS centres

Centre	Indigenous	Exotic	Total	<u></u>
Jagudan	218	7	225	
Jobner	281	20	301	
Total	499	27	526	

7.2 Coordinated Varietal Trial

7.2.2 CVT 2005

(Jagudan, Jobner)

Due to adverse weather conditions and severe disease incidence at Johner and poor germination at Jagudan the trails could not be completed at both the places.

Among the ten entries of cumin evaluated at Jobner in CVT and tested against wilt, blight and powdery mildew, CUM-3, CUM-6 and RZ-19 (check) recorded minimum disease incidence of wilt (3.33, 3.33 and 5.0%) and blight (26.67, 20.0 and 33.33%, respectively). CUM-2, CUM-3, CUM-4 and RZ-209 recorded minimum powdery mildew incidence (25%).

7.3 Varietal Evaluation Trial

7.3.1 Initial evaluation trial 2005 (Jagudan, Jobner)

The yield differences among the entries evaluated at Jagudan were non-significant. However, the entries JC-2002-41, JC-2002-32 and JC-2002-21 gave higher yield (i.e. 1139, 1129, 1124 kg/ha, respectively), than check GC-4 which was 11.54, 10.60 and 10.07 per cent higher over check, respectively. The pooled data for two years was also non significant for yield characters. However, the entry JC-2002-41 gave higher yield (1340 kg/ha), which was 12.79 per cent higher over check GC-4.

At Jobner ten entries were evaluated but due to adverse weather conditions during reproductive period and severe disease incidence of blight and wilt, the trial could not be completed. Out of ten entries in IET tested against wilt, blight and powdery mildew, UC-331 and UC-225 was found resistant against wilt, blight and powdery mildew.

7.4 Identification of drought tolerance (Jobner)

The trial could not be completed due to severe disease incidence and adverse weather conditions during reproductive period.

7.5 Role of rhizobacteria on growth and yield of cumin (Jagudan)

At Jagudan, two different types of rhizobacteria and their methods of application with recommended dose of fertilizer were tested on cumin cv. GC-4. The trial was laid out with an objective to study the effect of rhizobacteria on growth, yield and quality of seed. The effect of rhizobacteria were found to be non significant on ancillary characters, yield as well as quality of cumin.

7.6 Disease Management Trial

7.6.1 Management of wilt and blight disease in cumin (Jagudan, Jobner)

Minimum incidence of blight was found in the treatment spray with mancozeb @ 0.25% at 40, 50, 60 & 70 DAS (7.67%) and it was on par with the treatment of soil solarization + soil application of *Trichoderma harzianum* + spray with mancozeb @ 0.25% at 60 DAS and followed by the treatment of vermicompost + soil application of *T. harzianum* + mancozeb spray @ 0.25% at 60 DAS and neem cake + soil application of *T. harzianum* + mancozeb spray @ 0.25% at 60 DAS. The treatments, *Pseudomonas fluorescens* (IISR-6) @ 10° cfu as seed treatment + soil application of *T. harzianum* + *P. fluorescens* as spray and the control treatment showed maximum incidence of blight (27.33%). The minimum incidence of wilt was found in *P. fluorescens* (IISR-6) @ 10° cfu as seed treatment and spray at 60 DAS (10.00%) and it was on par with the treatment *P. fluorescens* (IISR-6)10° cfu as seed treatment + soil application of *T. harzianum* + *P. fluorescens* as spray. The maximum yield was found in spray of mancozeb @ 0.25% at 40, 50, 60 & 70 DAS (497 kg/ha) followed by the treatment of vermicompost + soil application of *T. harzianum* + mancozeb spray @ 0.25% at 60 DAS (305 kg/ha).

At Jobner the experiment on management of wilt and blight in cumin revealed that out of eleven treatments, the minimum wilt incidence (5.67%) and blight incidence (4.67%) was recorded in the treatment where soil solarization and soil application of *Trichoderma* + FYM and spray with mancozeb @ 0.25%. It was closely followed by vermicompost + soil application of *Trichoderma* and spray with mancozeb @ 0.25% wilt (7.0%) and blight (5.30%) with a seed yield of 244 kg/ha Maximum disease incidence wilt (20,0%) and blight (55.33%) with lowest yield (1.56 kg/ha) was observed in control (Table 49).

Table 49. Management of wilt and blight in cumin at Jobner.

Treatment	Wilt (%)	Blight (%)	Seed yield (kg/ha)
Soil solarization + soil application of <i>Trichoderma</i> + FYM (5 t/ha) + spray with mancozeb 0.25% (60 DAS)	5.67	4.67	294
Trichoderma + FYM + spray with mancozeb 0.25% (60 DAS)	8.00	5 33	230
Vermicompost (2 † /ha)+ <i>Trichoderma</i> — spray with mancozeb 0.25% (60 DAS)	7.00	5.30	235

8. Fennel

8.1 Genetic Resources

8.1.1 Germplasm collection, characterization, evaluation, conservation and screening against diseases

(Dholi, Hisar, Jagudan, Jobner, Kumarganj)

Among the thirty seven accessions evaluated at Dholi centre, six accessions, namely RF-58, RF-27, RF-28, RF-9, RF-57 and J.F-332 gave maximum yield as compared to Rajendra Saurabh check variety. Among the promising accessions, RF-58 and RF-27 produced maximum yield (0 90 kg/7.2 m²) followed by RF-28 (0.85 kg/7.2 m²).

One hundred and twenty two accessions of fennel were evaluated using PF-35, GF-1 and local as checks at Hisar centre. The mean seed yield of the germplasm ranged from 520 g (HF-201) to 1025 g (HF-125) per plot and the promising lines identified for high yield were HF-107, HF-116, HF-118, HF-119, HF-123, HF-125, HF-129, HF-132, HF-139, HF-149, HF-158, HF-200 and HF-212

At Jagudan, 66 and 52 entries were screened for blight disease during kharif and rabi season respectively and no disease was reported.

Out of 78 entries evaluated at Jobner, 10 entries namely, NS-61, NS-1, JF-25, SPS, NS-7, NS-5, NS-65, NS-15, and NS-21 yielded better than best check variety RF-125 and were identified as promising.

Maximum seed yield of fennel (3.4 q/ha) was recorded in NDF-34 followed by 1.32 q/ha in NDF-1, 16, 23, 38 at Kumarganj out of 44 entries screened during 2007-08. The germplasm maintained at various centres are given in Table 50.

Table 50. Fennel germplasm collections maintained at various AICRPS centres

Centre	Indigenous	Exotic	Total	
Dholi	39	-	39	
Hisar	122		122	
Jagudan	135	4	139	
Jobner	261	20	281	
Kumarganj	44		44	
Total	601	24	625	

8.2 Coordinated Varietal Trial

8.2.1 CVT-2004

(Dholi, Hisar, Jagudan, Jobner and Kumarganj)

At Dholi centre none of the entries were found significantly superior over local check variety Rajendra Saurabh regarding number of umbellets per umbel, number of grains per umbellet, yield per plot and yield per hectare. However, Rajendra Saurabh was found significantly early maturing as compared to all other entries and national check GF-2.

Significant differences were obtained for all the parameters at Hisar centre (Table 51). Plant height ranged from 108.7 to 129.3, number of branches 7.1 to 8.8, umbels per plant 31.9 to 47.0, umbellets per umbel 23.8 to 30.9 and seeds per umbel 235.5 to 342.3. Maximum seed yield was recorded as 2150 kg/ha in FNL-19, which was statistically at par with FNL-15, FNL-12 and FNL-18.

At Jagudan yield differences among the entries were found significant. But none of the entries was significantly superior over check. However, maximum yield was recorded in FNL-14 (2091 kg/ha), which was 7.35% higher, over check GF-11.

The analysis of variance revealed significant differences among the entries for all the traits including seed yield at Jobner centre. The seed yield ranged from 1075 56 to 1880.00 kg/ha. Of the fourteen entries evaluated, entry FNL-16 recorded maximum seed yield of 1880 kg/ha followed by FNL-15 (1822.22 kg/ha), FNL-14 (1782.22 kg/ha), RF-125 check (1613.33 kg/ha) and FNL-12 (1573.33 kg/ha), while lowest seed yield of 1075.56 kg/ha was recorded in FNL-20.

Among ten entries (FNL-2 to 11) tested at Kumarganj, FNL-6 showed maximum seed yield of 0.68 a/ha followed by 0.61 a/ha in FNL-6. FNL-19 showed maximum seed yield of 2.37 a/ha followed by FNL-23 out of twelve entries (FNL-12 to FNL-23).

Table 51. Performance of CVT fennel at Hisar

Entry	Plant height(cm)	Branches /plant	Umbels /plant	Umbellets /umbel	Seeds /umbel	Seed yield(kg/ha)
FNL -12	113.3	7.9	42.7	30.4	307.3	2000
FNL -13	116.3	7.1	34.0	26.9	273.4	1750
FNL -14	117.5	7.4	39.6	28.6	289.3	1900
FNL -15	108.9	7.9	42.2	30.6	327.3	2050
FNL-16	118.0	7.1	37.4	27.3	300.0	1850
FNL -17	112.4	7.4	39.2	29.5	306.1	1900
FNL -18	113.5	7.9	40.5	30.2	319.7	2000
FNL -19	126.9	8.8	47.0	30.9	342.3	2150
FNL -20	118.3	7.7	31.9	25.9	257.1	1650
FNL -21	115.5	7.2	31.9	23.8	235.5	1627
FNL -22	108.7	8.6	39.2	30.1	313.1	1930
FNL -23	117.1	8.2	37.2	30.0	295.3	1850
Local (C)	129.3	7.6	35.2	28.5	267.6	1827
HF-33 (SC)	123.1	8.6	39.6	30.3	311.5	1973
CD (P=0.05)	11.9	0.7	4.0	3.3	26.6	158

8 2 2 CVT- Transplant early rabi (2006) (Jagudan)

Significant yield differences were observed among entries at Jagudan centre during 2007-08. An entry FNL-3 was found significantly superior for yield (2754 kg/ha) was followed by FNL-2 (2537 kg/ha) and FNL-4 (2516 kg/ha) than check GF-11, which were 20.79, 11.26 and 10.34 per cent higher over check, respectively Significant difference was obtained in yield in the pooled two year data. But none of the entries were found significantly superior for yield over check. However, the entries FNL-2 and FNL-3 gave higher yield (2679 & 2671 kg/ha) which were 13.83 and 13.71 per cent higher over check GF-2, respectively.

8 2 3 CVT 2007 (Jagudan)

At Jagudan, nonsignificant yield differences were observed among entries. However, the entry FNL-29 gave significantly higher yield (2223 kg/ha) than check GF 2, which was 10 19 per cent higher over check GF-11 (Table 52)

Table 52 Yield performance of CVT 2007 fennel at Jagudan

Treatment	Yield ((kg/ha)		Per cent
	2006-07	2007-08	Mean	over control
FNL-1	1998	2352	2175	
FNL-2	2820	2537	2679	13 83
FNL-3	2587	2754	2671	13 49
FNL-4	2219	2516	2368	0 62
FNL-5	1877	1817	1847	
FNL-6	1641	1685	1663	
FNL-7	2136	1846	1991	
FNL-8	2090	1400	1745	-
FNL-9	1663	942	1303	
FNL-10	1696	1612	* 1654	
FNL-11	1507	1201	1354	
GF-2 (Check)	2425	2280	2353	
SEm ±	96	82	171	-
CD (P=0 05)	282	240	531	
CV%	8 09	7 41	7 79	

8 3 Varietal Evaluation Trial

8 3 1 Initial evaluation trial (Hisar, Jagudan, Jobner, Kumarganj)

At Hisar, IET in fennel was conducted with ten accessions along with GF-2 (check) and the results indicated that HF-131 and HF-143 gave better yield over GF-2 showing 21 3 and 24 3% increase in yield, respectively Hence, both these lines have been included in coordinated varietal trial for further evaluation

At Jagudan, significant yield differences were observed among entries but none of the entries was significantly superior over check GF-11 However, the entries JF-586-5 and JF-596 recorded higher yield (2289 and 2256 kg/ha), which was 11 53 and 9 91 per cent higher than check GF-11, respectively

The analysis of variance revealed significant differences among the entries for all the traits including seed yield at Jobner. The mean days to flowering ranged from 105.0 (NS-3.8 local check) to 109.33 days (NS-32), plant height from 90.00 (RF-125 check) to 130.27 cm (NS-11), branches per plant 4.47 (local check) to 6.93 (NS-32), umbels per plant from 9.73 (NS-45) to 14.07 (NS-63), umbellets per umbel from 15.93 (local check) to 23.67 (NS-45), seeds per umbel from 222.13 (NS-3) to 388.87 (NS-63) and test weight from 6.73 (NS-45) to 9.41 g (NS-10). The seed yield ranged from 907.41 to 1962.96 kg/ha. Of the twelve entries evaluated, entry NS-63 recorded maximum seed yield of 1962.96 kg/ha followed by NS-46 (1694.44 kg/ha), RF-125 check (1629.63 kg/ha) and RF-101 check-1 (1333.33 kg/ha), while lowest seed yield of 907.41 kg/ha was recorded in NS-37. Mean performance of the entries evaluated in IET over 2005-06 and 2006-07 revealed superior performance of NS-63 yielding 1935.19 kg/ha followed by NS-46 (1763.52 kg/ha), RF-125 check (1694.44 kg/ha) and RF-101 check (1504.63 kg/ha), while lowest seed yield of 981.48 kg/ha was recorded in NS-37 (Table 53).

In the IET conducted at Kumarganj center with 10 promising lines, NDF-16 and NDF-24 gave maximum seed yield of 0 64 g/ha followed by seed yield of 0 57 g/ha in NDF-6

Table 53 Yield performance of IET fennel at Jobner

Entry		Yield (kg/ha)	
	2005-06	2006-07	Mean
NS-3	1351 85	1055 56	1203 71
NS-10	1398 15	1259 26	1328 71
NS-11	833 33	1212 96	1023 15
NS-32	1518 52	907 41	1212 97
NS-37	1055 56	907 41	981 49
NS-41	1555 56	1166 67	1361 12
NS-45	1074 07	972 22	1023 15
NS-46	1842 59	1694 44	1768 52
NS-63	1907 41	1962 96	1935 19
RF-101 Check	1675 93	1333 33	1504 63
RF-125 check	1759 26	1629 63	1694 45
Local Check	1157 41	1074 07	1115 74
CD (P=0 05)	251 43	272 76	
CV (%)	10 40	12 74	

8 4 Quality Evaluation Trial

8 4 1 Quality evaluation in fennel (Jobner)

CVT fennel

Fourteen entries of fennel under CVT were tested for volatile oil content during Rabi 2006-07 at Johner The volatile oil content in the entries of CVT ranged from 1 60% to 2 47%. The maximum volatile oil of 2 47% was

observed in FNL-17 followed by 2.27% in FNL-15 and FNL-20, while, minimum of 1.60% in FNL-14. FNL-15 was identified as a superior entry in terms of volatile oil yield (41 36 l/ha) followed by FNL-16 (40.04 l/ha), RF-125 check (34 36 l/ha), FNL-17 (32.93 l/ha) and FNL-14 (28.52 l/ha). While lowest volatile oil yield of 20.07 l/ha was recorded in FNL-23 (Table 54).

IET fennel

Twelve entries of fennel under IET at Jobner, were tested for volatile oil content during 2006-07 and the oil ranged from 1.80% to 2.47%. The maximum volatile oil of 2.47% was recorded in NS-46 followed by 2.40% in NS-63, 2.27% in NS-45 and RF-101 check, whereas minimum of 1.80% in NS-41. The entries, NS-63, NS-64, RF-125 check and RF-101 check have shown better performance as compared to local check with respect to volatile oil yield in terms of litre per hectare. On the basis of two years data (2005-06 & 2006-07), the highest mean volatile oil content of 2.64% was recorded in NS-46 followed by 2.60% in NS-63, 2.50% in NS-45 & 2.49% in RF-101 check, whereas minimum 2.05% was recorded in local check. The maximum mean volatile oil yield in terms of litre per ha was observed in NS-63 (50.31 l/ha) followed by NS-46 (46.60 l/ha), RF-125 check (41.01 l/ha), and RF-101 check (37.39 l/ha) and minimum in NS-37 (22.43 l/ha) (Table 55).

Table 54. Volatile oil content of entries of fennel (IET) in 2006-2007

Entry	Seed yield (kg/ha)	Volatile oil (%)	Volatile oil yield (I/ha)
NS-3	1055.56	1.80	19.00
NS-10	1259.26	2.20	27.70
N\$-11	1212.96	2.13	25.84
NS-32	907.41	2.20	19.96
NS-37	907.41	2.00	18.15
NS-41	1166.67	1.80	21.00
NS-45	972.22	2.27	22.07
NS-46	1694.44	2.47	41.85
NS-63	1962.96	2.40	47.11
RF-101 Check	1333.33	2.27	30.27
RF-125 check	1629.63	2 07	33.73
Local Check	1074.07	1 93	20.73
CD (P=0.05)	272.76	0.18	(
CV (%)	12.74	1.80	

Table 55. Mean volatile oil content of fennel (IET) 2005-06 and 2006-07

Entry	Mean seed		%)	Mean volatile	
	yield (kg/ha)	2005-06	2006-07	Mean	oll yield (I/ha)
NS-3	1203.71	2.37	1.80 '	2.09	25.10
NS-10	1328.71	2.23	2 20	2.22	29.43
NS-11	1023.15	2.37	2.13	2.25	23.02
NS-32	1212.97	2.23	2.20	2.22	26.87
NS-37	981 49	2.57	2.00	2.29	22.43

CV (%)		2.14	4.89		
CD (P=0.05)		0.09	0.18		
Local Check	1115.74	2.17	1.93	2.05	22.87
RF-125 check	1694.45	2.77	2.07	2.42	41.01
RF-101 Check	1504.63	2.70	2.27	2.49	37.39
NS-63	1935.19	2.80	2.40	2.60	50.31
NS-46	1768.52	2.80	2.47	2.64	46.60
NS-45	1023.15	2.73	2.27	2.50	25.58
NS-41	1361.12	2.77	1.80	2.29	31.10

8.5 Nutrient Management Trial

8.5.1 Effect of biofertilizer, *Azospirillum* on fennel (*Dholi*)

At Dholi centre, application of inorganic nitrogen (100%) + FYM 5 t/ha + Azospirillum (T_1), inorganic nitrogen (75%) + Azospirillum + FYM 5t/ha (T_2) and inorganic nitrogen (50%) + Azospirillum + FYM 5t/ha (T_2) and inorganic nitrogen (50%) + Azospirillum + FYM 5t/ha (T_3) were found significantly superior as compared to control regarding number of umbels per plant, number of umbellet per umbel, number of grains per umbellet and grain yield per plot or per hectare. Among the treatments, application of inorganic nitrogen (100%) + FYM 5t/ha + Azospirillum (T_1) produced maximum number of branches per plant (9.67), number of umbellet per umbel (65.00), number of grains per umbellet (41.00) and yield per plot (1.18 kg/7.2m²) or yield (1.64 t/ha) followed by application of inorganic nitrogen (75%) + Azospirillum + FYM 5 t/ha).

8.5.2 Role of rhizobacteria on growth and yield of fennel (Jagudan)

A new experiment was initiated during 2007-08 to evaluate the influence of two different types of rhizobacteria and their methods of application with recommended dose of fertilizer on fennel cv. GF-11 on growth, yield and quality of seed. The effect of rhizobacteria was found non significant on ancillary characters, yield as well as quality of fennel except number of umbels per plants. However, beneficial effect of seed and soil inoculation of FL-18 was observed.

8.6 Identification of drought/alkalinity tolerance source in fennel (Kumarganj)

During 2007-08, ten genotypes of fennel was tested with four levels of ESP and found that the highest yield of 52.25 and 49.25 g/plant was recorded under 10 and 20 ESP levels respectively in NDF-12.

9. Fenugreek

9.1 Genetic Resources

9.1.1 Germplasm collection, charácterization, evaluation, conservation and screening against diseases

(Dholi, Guntur, Hisar, Jagudan, Jobner, Kumarganj)

Among one hundred and seven collection of fenugreek germplasm evaluated at Dholi, only sixteen accession namely, RM-18, RM-28, H.M.-376, NDM-19, RM-70, RM-188, RM-192, UM-69, UM-127, RM-189, RM-190, RM-185, RM-15, HM-350, UM-37 & UM-31 gave maximum yield as compared to high yielding variety Rajendra Kanti. Among the promising accessions, RM-18, RM-28, HM-376 & NDM-19 gave maximum yield (0.95 kg/4.5 m²) followed by RM-70, RM-188, RM-192, UM-69 & UM-127 (0.90 kg/4.5 m²).

Among the fifty-eight accessions evaluated at Guntur, LFC-103 recorded highest yield (single plant yield) of 1.59 g followed by LFC-99 (1.42 g) which was significantly superior to checks Lam Selection-1 (0.74 g), Hisar Anand (0.92 g), PEB (0.69 g) and Local (0.80 g).

At Hisar, the mean seed yield ranged from 850 kg/ha (IC-397994) to 1950 kg/ha (Hisar Sonali)

Seventy six entries including GM-1 and GM-2 as checks were evaluated for different characters at Jagudan and among them nine entries were found promising for yield ($>3400 \, \text{kg/ha}$). Forty seven (45 ± 2) entries were screened against powdery mildew disease under natural condition. The disease incidence ranged from 1 to 85%. None of the entries were found free from disease incidence. The minimum incidence was found in JFg-246 (1%) followed by JFg-255 (3%), UM-305 (6%), JFg-242 (8%) and FGK-8, JFg-228, JFg-245 and GM-2 (check) registered 10% incidence. Twenty entries short-listed during the previous year were again screened against powdery mildew disease under natural condition. The disease incidence ranged from 0 to 5 %. The entry JFg-256-1 was found absolutely free from disease followed by JFg-256-2 (0.5%).

Three hundred and sixty five germplasm accessions including 12 exotic collections are maintained at Johner centre. The germplasm maintained by various AICRPS centres are given in Table 56.

Out of 80 genotypes screened at Kumargani, NDF-24 produced maximum seed yield of 26.4 a/ha followed by NDM-18 (23 a/ha)

Table 56. Fenugreek germplasm collections under AICRPS centres

Centre	Indigenous	Exotic	Total	
Dholi	107	-	107	
Guntur	125	-	125	
Hisar	240		240	
Jagudan	64	-	64	
Jobner	353	12	365	
Kumarganj	77	-	77	
Total	966	12	978	

9.2 Coordinated Varietal Trial

9.2.1 CVT 2001 – Series V (final report) (Coimbatore)

A total of 25 fenugreek accessions were evaluated for their growth and yield performance during rabi season 2005-06 CO-2 fenugreek was used as local check. Among the 25 accessions, the accession, Rmt-303 recorded the highest yield of 1030 kg/ha followed by JF-244 which recorded an yield of 870 kg/ha. The accession HM- 232 recorded the lowest yield of 225 kg/ha. All the accessions were screened for their resistance against powdery mildew disease. Rmt-303 and JF-270 recorded minimum disease incidence of 14.23% and 15.23% respectively.

The experiment conducted during 2006-07 revealed that among the 25 accessions evaluated the accession JF- 270 recorded the highest yield of 525 kg/ha followed by RM-28, NDM-20, CM-145, Rmt-1 and NDM-19 (450 kg/ha). All the accessions were screened for resistance against powdery mildew disease. The results showed that none of the accessions were resistant to powdery mildew disease.

During 2007-08, NDM-20, CM-145 and Rmt-1 recorded the highest yield of 500 kg/ha.

The pooled analysis for three years revealed that the cultivar JF-270 recorded the highest yield of 573 kg/ha which was on par with Rmt- 303 (543.33 kg/ha) (Table 57).

Table 57. Yield of CVT 2001 fenugreek at Coimbatore

Cultivar/ Variety		Yield /	ha (t)	,
	2005-06	2006-07	2007-08	Mean
HM-376	635	270	350	418.33
UM-363	880	270	300	483.33
HM-57	510	285	250	348.33
NDM-25	655	195	350	400 00
JFG-244	870	300	350	506.66
CO-2	235	270	350	285.00
RM-28	510	450	400	453.33
NDM-20	540	450	500	496.66
UM-392	530	270	350	383.33
CM-1	575	225	250	350.00
UM-351	580	375	400	451.66
RM-18	715	285	250	416.66
HM-65	490	360	350	400.00
Rmf-303	1030	300	300	543.33
UM-362	580	210	350	380.00
CM-145	495	450	500	481.66
UM-352	590	285	400	425.00
UM-1	675	365	300	446.66
Rmt -1	480	450	500	476.66
NDM- 19	645	450	450	515.00
UM-361	590	285	350	408.33
JF-270	795	525	400	573.33
HM-292	520	270	250	346.66
HM-444	335	285	300	306.66
HM-232	225	255	350	276.66
SED				19.64
CD (P = 0.05)				39.49

9.2.2 CVT-2005 Series VI

(Hisar, Jobner)

Out of 12 entries evaluated in coordinated varietal trial at Hisar, significant differences were obtained for all the parameters. Plant height ranged from 68.9 to 87.3, pods per plant 53.6 to 77.2, length of pods 8.1 to 9.0 and seeds per pod 16.1 to 17.3. Maximum seed yield (1967 kg/ha) was recorded in FGK-1 and FGK-11 followed by FGK-3 (1900 kg/ha) and local check (1860 kg/ha)

At Jobner, significant differences among the entries for all the traits including seed yield were registered. The seed yield ranged from 708.33 to 1550.93 kg/ha and FGK-1 recorded maximum seed yield of 1550.93 kg/ha followed by RM-70 (1537.04 kg/ha), RMt-351 check (1532 41 kg/ha), RMt-303 check (1513 90 kg/ha), FGK-2 (1245.37 kg/ha), RMt-1 check (1231.48 kg/ha), and FGK-3 (1203 70 kg/ha), while lowest yield of 708.33 kg/ha was recorded in FGK-10 (Table 58). Entries FGK-1, FGK-2 and RMt-351 (check) were found resistant for root rot, downy mildew and powdery mildew disease.

Table 58. Performance of CVT fenugreek at Jobner

Entry	Days to flowering	Plant height (cm)	Branches per plant	Pods per plant	Pod length (cm)	Seeds per pod	Test wt. (g)	Seed yield (kg\ha)	Increase/ decrease over check (%)
FGK-1	50.00	65.47	5.60	32.60	10.27	17.53	13.94	1550.93	+1.21
FGK-2	46.33	55.40	5.67	25.00	10.27	16.80	13.75	1245.37	-18.73
FGK-3	45.67	65.07	4.67	23.40	10.63	16.80	13.44	1203.70	-21.45
FGK-4	43.00	56.40	5.73	26.27	11.13	16.40	12.23	953.70	-37.76
FGK-5	51.00	58.67	5.27	27.60	11.13	16.93	12.24	1009.26	-34.14
FGK-6	46.33	55.87	5.80	26 67	10.77	14.80	12.05	1111.11	-27.49
FGK-7	48.67	59.73	6.07	35.27	11 07	16.93	12.63	1064.81	-30.51
FGK-8	46.00	50.53	6.07	30.27	11.47	16.60	11.09	1125.00	-26.59
FGK-9	44.33	56.27	5.73	26.53	10.70	15.73	12.87	1041 67	-32.02
FGK-10	47.67	44.00	5.27	24.33	10.80	16.27	11.58	708.33	-53.78
FGK-11	43.00	57.87	6.07	27.47	11.67	16.60	12.31	939.81	-38.67
RM-18	50.67	63.80	6.20	31.87	10.80	16.20	12.03	1143.52	-25.38
RM-28	51.33	59.27	5.53	29.47	11.40	17.53	11.38	884.26	-42.30
RM-70	52.67	54.67	6.27	29.60	10.73	17.73	11.85	1537.04	+0.30
FGK-12	47.33	56.80	5.47	26.60	11.20	16.20	12.68	995.37	-35.35
JFg-244	44.67	59.53	5.53	23.33	12.37	17.87	12.74	990.74	-35.35
RMt-1 C	51.67	62.00	5.07	24.73	10.23	16.73	11.99	1231.48	-19.64
RMt- 303C	46.00	57.60	5.93	33.07	10.90	17.40	13 90	1513.89	-1.21
RMt- 351 C	47.33	61.00	5.33	28 07	10.23	16.33	12.69	1532.41	Check
Local Check	54.33	62.13	4.60	24.20	10.33	16.33	10.13	851.85	-44.41
CD (P=0.05)	1.65	NS	0.77	4.26	0 98	1.08	1.07	176.53	
CV (%)	2.09	10.72	8.37	9.27	5.43	3.92	5.22	9.44	

9 2 3 CVT 2006

(Dholi, Guntur, Jagudan, Kumarganj)

At Dholi, all the entries recorded significantly higher plant height except FGK-10, FGK-12 and FGK-13 as compared to local check Rajendra Kanti. None of the entries were found significantly superior for number of branches per plant and pod length. However, all the entries were found significant with respect of delayed maturity as compared to local check Rajendra Kanti. FGK-14 produced significantly more yield (1.57 kg/7.2 m² or 2.18 t/ha) as compared to local check Rajendra Kanti with 19.12% increase over local check.

Among the fourteen genotypes evaluated at Guntur FGK-9 (679 kg/ha), FGK-7 (519 kg/ha), FGK-11 (494 kg/ha) and FGK-10 (492 kg/ha) recorded significantly higher yield than the check LS-1 (305 kg/ha)

At Jagudan, significant yield differences were observed among the entries FGK-6 was found significantly superior for yield (1646 kg/ha) over check GM-2, which was at par with FGK-13 (1447 kg/ha) and FGK-4 (1429 kg/ha) They were 1976, 532 and 397 per cent higher over check, respectively (Table 59)

Maximum seed yield of 18 7 q/ha was registered in entry FGK-12 followed by FGK-14 producing 15 23 q/ha at Kumarganj

Table 59 Yield and ancillary characters of CVT fenugreek at Jagudan

Entry	50 % Flowe- ring	Maturity (DAS)	Plant height (cm)	Branches /plant	Pods /plant	Length of pod (cm)	Seeds /pod	Yield /plant (g)	Yıeld (kg/ha)	Increase over check (%)
FGK-1	48	122	59 6	5 2	25 1	96	165	4 12	1346	-
FGK-2	44	128	53 5	46	176	106	168	4 00	1308	
FGK-3	46	124	57 9	50	23 2	100	162	3 83	1254	-
FGK-4	42	123	56 3	51	22 6	113	172	4 37	1429	3 97
FGK-5	46	129	58 6	52	26 5	105	160	3 86	1264	-
FGK-6	44	125	66 0	4.8	26 4	107	165	5 03	1646	19 76
FGK-7	48	121	60 5	50	23 9	107	164	4 18	1368	
FGK-8	50	118	58 5	5 7	246	103	182	4 03	1320	-
FGK-9	47	120	58 4	55	23 2	102	174	3 70	1209	-
FGK-10	41	120	54 2	48	184	104	15 7	3 01	986	
FGK-11	49	129	64 0	53	25 6	115	18 4	4 15	1358	
FGK-12	49	127	58 2	49	25 9	105	179	3 54	1158	-
FGK-13	53	128	628	45	24 5	102	182	4 42	1447	5 32
FGK-14	45	112	54 5	49	279	104	170	3 96	1297	
FGK-15	46	121	60 5	44	200	104	170	3 75	1227	
FGK-16	43	127	60 9	50	23 7	108	171	4 02	1317	-
GM-1 (Check)	38	115	50 0	50	90	90	160	3 74	1093	
GM-2 (Check)	41	123	62 0	60	38 0	110	170	4 20	1374	
SEm ±								0 28	92	
CD (?=0 05) CV %								0 81 12 26	265 12 26	

9 3 Varietal Evaluation Trial

9.3.1 Initial evaluation trial (Guntur, Hisar, Jagudan, Jobner, Kumarganj)

Among the entries tested during 2006-07 at Guntur, LFC-105 recorded the highest yield (623 kg/ha) followed by LFC-103 (577 kg/ha) which are significantly superior to check Lam Selection-1 (388 kg/ha). Three years pooled data indicated that LFC-105 and LFC-103 (905 kg/ha) recorded significantly superior yields over check Lam Selection-1 (692 kg/ha) (Table 60).

Table 60. Growth and yield attributes of IET fenugreek (Pooled) at Guntur

Entry	Plant height (cm)	No of bran- ches	No. of days to 50% flowe- ring	No. of days to maturity	No. of pods	Length of pod (cm)	Dios- genin (%)	Yield (kg/ha)	Increase /decrease over check (%)
LFC-85	37 6	3.8	43.2	79.7	23 1	9.8	0 51	690 0	-0.2
LFC-88	39.9	4.0	44.8	81.2	25 0	10.2	0 51	724.0	4 7
LFC-94	40 3	4 1	44 3	78.7	23.4	9.7	0 63	787.0	13.8
LFC-102	44.5	4.2	42 9	81.4	23.1	100	0.45	763.0	103
LFC-103	39.3	5.0	47.5	81 6	29 0	9.9	0.31	905.0	30 8
LFC-105	42.1	5.0	46 3	83.0	28.6	9.7	0.53	905.0	30.9
LFC-112	36.3	3.8	42 5	82.8	20.6	9.8	0.61	718.0	38
LFC-113	37.8	3.8	44.1	83.1	23.4	9.7	0 52	705 0	1.9
LFC-114	37.4	4.0	44.3	83.2	24 2	10.0	0 42	7120	3.0
LFC-118	37.8	3.6	44.7	83.3	183	9.7	0.42	709.0	2.5
LS-1	35.8	3.5	43.8	83.3	20.6	93	0.47	692.0	-
PEB	35.0	3.4	44 8	84.3	20.8	9.0	0.43	618.0	-10.6
CD (P=0.05) CV%	5 1 7.8	1.0 14.6	1.6	1 7 1.2	7.0 17.7	0.9 5.5	0.02 0.51	149.6 11.9	

The initial evaluation trial in fenugreek at Hisar was conducted with ten accessions along with Hisar Sonali as check. The results indicated that maximum seed yield was recorded in HM-348 followed by HM-355 showing an increase of 24.6 and 17 7% respectively over Hisar Sonali (check). Entries HM-348 and HM-355 were identified for coordinated varietal trial for further evaluation

At Jobner, the analysis of variance revealed significant differences among the entries for all the traits including seed yield. The seed yield ranged from 824.07 to 1500.00 kg/ha. UM-354 recorded maximum seed yield of 1500 kg/ha followed by UM-202 (1453.70 kg/ha), RMt-1 check (1314.81 kg/ha), RMt-303 check (1305.56 kg/ha) and UM-134 (1194.44 kg/ha), while lowest yield of 824 07 kg/ha was recorded in UM-189. Out of the ten entries evaluated in IET, UM-134, UM-354 and RMt-303 (check) were found resistant for root rot, downy mildew and powdery mildew disease

In the IET at Jagudan, the entries JFg-255, JFg-253 and JFg-220 gave higher yield (I.e. 1829, 1806 and 1731 kg/ha respectively) than GM-1 which was 19.77, 18.20 and 13 28 per cent higher over GM-1, respectively. The pooled over three years data showed non significant yield differences among entries. However, the entries

JFg-255, JFg-220 and JFg-178 gave higher yield (*i* e. 2388, 2244 and 2209 kg/ha respectively) than GM-1 which was 23.56, 16.07 and 14.30 per cent higher over GM-1, respectively (Table 61).

Among the 10 lines evaluated at Kumarganj NDM-25 recorded highest seed yield (24.2 q/ha) followed by NDM-19 (22 9 q/ha).

Table 61. Yield performance of IET fenugreek at Jagudan (Pooled analysis)

Treatment		Yield (kg/ha)		Mean	Increase	
	2005-06	2006-07	2007-08		over check (%)	
JFg-15	2370	1658	1407	1812	-	
JFg-148	2448	1952	1132	1844 ·		
JFg-178	2681	2314	1633	2209	14.30	
JFg-181	2461	1824	1378	1888		
JFg-220	2572	2428	1731	2244	16.07	
JFg-252	2565	2131	1289	1995	3.21	
JFg-253	2146	2445	1806	2132	10.31	
JFg-254	2330	1767	1633	1910		
JFg-255	2363	2973	1829	2388	23.56	
GM-1 (Check)	2024	2247	1528	1933	•	
SEm ±	129	309	98	125		
CD (P=0.05)	NS	NS	291	NS		
CV%	9.30	24.59	10.99	17 11		

9.4 Nutrient Management Trial

9.4.1 Effect of biofertilizers using Azospirillum on fenugreek (final report) (Dholi)

At Dholi nine treatments of bio-fertilizers, Azospirillum and one control were tested during 2007-08 and no significant difference was observed for plant height, number of branches per plant, pod length and number of grains per pod. However, inorganic nitrogen 100% + Azospirillum + 5 t/ha FYM; inorganic nitrogen 75% + Azospirillum 5 t/ha FYM; inorganic nitrogen 50% + Azospirillum + 5 t/ha FYM;) and FYM-10 t/ha + Azospirillum produced significantly more number of pods per plant (71.73, 64.27, 59.87 and 53.20 respectively) as compared to control (39.80). Regarding yield, all treatments gave significantly more yield except Azospirillum @ 1.5 kg/ha as compared to control. Among the entries inorganic nitrogen 100% + Azospirillum +.5 t/ha FYM gave maximum number of pods per plant (71.73) and yield (0.98 kg/4.5 m² or 2.18 t/ha) followed by inorganic nitrogen 75% + Azospirillum + 5 t/ha FYM (0.90 kg/4.5 m² or 2.00 t/ha).

9.4.2 Identification of source of drought tolerance in fenugreek (Guntur, Jobner)

Among the fifty-eight germplasm lines evaluated at Guntur, biomass varied from 5.6 (LFC-97), to 14.74 (LFC-122) g/plant. The root length of the germplasm lines varied from 8.0 cm (Local) to 16.3 cm (LFC-91).

Shoot length varied from 26.9 cm (LFC-122) to 45.7 cm (LFC-77). The root-shoot ratio of the germplasm lines varied from 0.22 (Local) to 0.36 (LFC-121).

At Jobner, based on the values of Stress susceptibility index (SSI), Stress tolerance index index (STI) and Stress tolerance (TOL) genotypes J.Fg.-244, NS-2006-7, NS-2006-3 were rated as good genotypes which were tolerant to limited moisture condition.

9.4.3 Effect of bioregulators on fenugreek

(Combatore, Dholi, Johner, Kumarganj)

The trial on effect of bioregulators on coriander was initiated during 2005-06 with the variety CO-(CR)-4. The experiment was conducted with four factors (tricontanol 0.5ml/l, 1.0 ml/l, NAA 50 ppm and water spray) and with three levels each (one spray - 40 DAS, two sprays - 40 and 60 DAS and three sprays 40, 60 and 80 DAS). In 2005-06 evaluation revealed that the treatment T1 (spraying of triacontanol at 0.5 ml/l at 40 days after sowing resulted in the maximum grain yield of 813.3 kg/ha. The same trend was noticed in 2006-07 and 2007-08 evaluation with an yield of 853.3 kg/ha and 901.2 kg/ha respectively. The pooled analysis also revealed that the highest yield of 855.93 kg/ha was obtained by spraying triacontanol 0.5ml/l after 40 days of sowing (Table 62).

Studies conducted at Dholi indicated that application of bioregulators had significant effect on plant height, number of pods per plant and yield per plot and yield per hectare while non-significant effect was observed regarding number of branches per plant, pod length and number of grains per pod. However, spraying of GA @ 50 ppm has significantly increased, the plant height (85.28 cm), number of pods per plant (43.77) and yield per plot (1.47 kg/7.2 m² or 2.04 t/ha) as compared to water spray. Three sprays (25, 45 and 70 DAS) gave maximum plant height (86.23 cm), number of branches per plant (7.08), number of pòds per plant (46.93) and yield (1.45 kg/7.2m² & 2.01 t/ha) followed by two sprays (25 & 45 DAS). Interaction effect was found non-significant regarding yield and yield attributing characters. However, three sprays (25,45 and 70 DAS) of bio-regulators GA @ 50 ppm gave the maximum plant height (89.67 cm), number of branches per plant (7.06), number of pods per plant (50.86), pod length (11.80 cm), number of grains per pod (18.20) and yield (1.56 kg/7.2m²) or (2.17 t/ha) followed by three sprays (25 & 45 & 70 DAS) of triacontanol @ 0.5 ml per liter of water.

Two year data of the experiment to evaluate the effect of bio-regulators on fenugreek at Jobner centre revealed that application of NAA 50 ppm resulted in significantly higher seed yield of fenugreek but it was at par with triacontanol 1.0 ml/l. Triacontanol 1.0 ml/l was also significantly superior over triacontanol 0.5 ml/l and water spray. With the increase in number of sprays, the seed yield also showed increasing trend but the significant response was observed only up to 2 sprays *i.e.* at 40 and 60 DAS. Significantly lower seed yield of fenugreek was recorded in the absolute control as compared to the mean of all other treatments.

At Kumarganj, maximum seed yield of 17.60 q/ha was recorded when crop was sprayed with tricantanol 1 ml/l of water after 30, 40 and 60 DAS. The next best treatment was spraying of NAA (50 ppm) after 40 days of sowing which recorded an yield of 16.21 q/ha.

Table 62. Effect of bioregulators on coriander at Coimbatore [Pooled analysis (2005-06 - 2007-08)]

Tre	atment	Root length (cm)	Shoot length (cm)	No. of bran- ches	No. of flowers /plant	No. of umbels (5 m²) g	Yield /plot	Yield /ha (kg)
T,	Triacontanol 0.5 ml/l at 40 DAS	6.73	27.26	4.63	59 67	14.07	427.97	855.93
T_2	Triacontanol 0.5 ml/l at 40 & 60 DAS	7.23	31.43	5.50	45 40	14.20	372.89	745.77
T ₃	Triacontanol 0.5ml/l at 40, 60 & 80 DAS	6.17	35.07	5.47	61.57	21.57	355 17	710.33
T ₄	Triacontanol 1.0 ml/l at 40 DAS	6.97	31 78	4.27	58.30	15.97	389.50	779.00
T ₅	Triacontanol 0.5ml/l at 40 & 60 DAS	7.40	33.47	5.60	59.97	16.07	340.07	680 13
T ₆	Triacontanol 0.5ml/l at 40, 60 & 80 DAS	9.20	32.73	4.53	54.57	14.90	363.79	727.57
Т,	NAA 50 ppm at 40 DAS	8.40	37 43	5.43	56.67	13.60	335.50	671.00
T ₈	NAA 50 ppm at 40 & 60 DAS	7.97	33.53	6.03	56.33	15.47	368.54	737.07
Ţ	NAA 50 ppm at 40, 60 & 80 DAS	6.70	33.43	5.33	48.83	12.77	372.73	745.47
Tio	Water spray at 40 DAS	7.10	31.50	4.83	61.00	15.93	382.07	764.13
Tn	Water spray at 40,60 DAS	7.90	31.00	4.77	80.37	18.73	376.17	752.33
T ₁₂	Water spray at 40, 60 & 80 DAS	8.13	31.27	5.10	70.17	15.97	359.44	718.90
SEC)	0.49	2.09	0.33	3.88	1.02	23.84	47.69
CD	(P = 0.05)	1.02	4.34	0.68	8.06	2.11	49.46	98.92

9.4.4 Role of rhizobacteria in growth promotion of fenugreek.(Dholi, Guntur, Hisar, Jagudan, Kumarganj)

A field trial was conducted to see the effect of rhizobacteria on growth promotion of fenugreek at Dholi centre. All the treatments were found to have significant effect on growth promotion of fenugreek. Highest number of branches/plant (7.03), pod length (12.00 cm), number of grains/pod (19.00), yield (1.17 t/ha) and increase in yield over control (64.79%) was found in treatment of seed with rhizobacterial strain FL-18. whereas highest plant height (77.60 cm), no. of pods/plant (50.53) were found in treatment of seed and soil application with rhizobacterial strain FK-14. The second best treatment was recorded in seed treatment and soil application with rhizobacterial strain FK-14 which recorded highest number of branches/plant (6.73), number of grains/pod (18.07), yield (1.12 t/ha) and consequently increase in yield over control (57.75%).

At Guntur, eight treatments with three rhizobacteria were evaluated for their effect on growth promotion of fenugreek. Among the treatments evaluated, seed treatment + soil application with FK-14 + FL-18 recorded maximum yield (392 kg/ha) followed by seed treatment + soil application with FK-14 (369 kg/ha) which are on par with each other and significantly superior to control (313 kg/ha). Maximum plant height (35.3 cm),

number of branches, number of pods per plant, pod length, and number of seeds were also recorded in seed treatment + soil application with FK-14 + FL-18 (10.2).

Maximum seed yield (1705 kg/ha) was recorded with the application of rhizobacteria FL-14 \pm FL-18 (seed treatment \pm soil application) followed by *Trichoderma* MTCC- 5179 (1640kg/ha) at Hisar (Table 63).

At Jagudan the effect of rhizobacteria was found non significant on ancillary characters, yield as well as quality of fenugreek except length of pod. However, seed and soil inoculation of FL-18 was found beneficial for improving yield

At Kumarganj, seed treatment and soil application of rhizobacteria (FL-18 + FK-14) gave maximum growth in terms of maximum plant height (91.40), length of pod (11.53 cm), number of grains/pod (18.27) and seed yield of 11.43 g/ha.

Table 63. Effect of rhizobacteria on growth and seed yield of fenugreek at Hisar

Treatment	Plant height (cm)	Branches /plant	Pods /plant	Pod length (cm)	Seeds /pod	Seed yield (kg/ha)
Rhizobacteria FK-14 (seed treatment)	59.9	6.0	40.3	8.7	16.7	1417
Rhizobacteria FK-14 (seed treatment + soil application)	71.8	6.2	47.7	8.7	18.1	1583
Rhizobacteria FL-18 (seed treatment)	65.1	5.4	43.8	8.2	15.5	1478
Rhizobacteria FL-18 (seed treatment + soil application)	65.1	5.5	40.5	8.3	16.5	1535
Rhizobacteria FK-14 + FL-18 (seed treatment)	65.8	5.8	41.9	8.4	16.9	1548
Rhizobacteria FK- 14 + FL-18 (seed + soil treatment)	71.0	6.2	54.4	9.0	18.1	1705
Trichoderma MTCC 5179 (Recommended dose)	67.0	5.7	47.9	8.4	18.0	1640
Control	70.5	5.8	38.6	8.6	16.1	1503
C D (P=0.05)	6.0	0.4	4.7	0.3	1.4	70

10. Paprika

- 10.1. Genetic resources
- 10.1.1 Germplasm collection, characterization, evaluation and conservation (Coimbatore, Guntur)

The germplasm collections of nine paprika accessions maintained at Coimbatore centre were evaluated. Among the nine accessions, Acc.3 recorded the highest fresh fruit yield of 328 g/plant followed by Acc.2 which recorded a yield of 248.3 g/plant.

During the year 2007-08, twenty genotypes were evaluated at Guntur centre. Among the entries evaluated, maximum plant height was recorded by entry PGP-21 that was significantly superior to check CA-960 (50.7 cm) and on par with the other check Byadagi Kaddi (69.9 cm). Maximum number of primary branches was recorded in the entry PGP-29 that was significantly superior to the check Byadagi Kaddi (2.1), and on par with the other check CA-960 (3.0). Maximum numbers of secondary branches were recorded in the entry PGP-45 (19.3) where as maximum number of fruits was recorded in PGP-17 (132.9), which was significantly superior to the checks Byadagi Kaddi (91.5) and CA-960 (88.9). Highest yield (dry) was obtained in the entry PGP-17 (186 g) followed by PGP-77 (169.1 g) and PGP-76 (158.8 g) which were significantly superior to checks PGP-56 (Byadagi Kaddi) (107 g) and PGP-57 (CA-960) (98.6 g). Fifteen germplasm lines were collected during the period.

ICAR- Adhoc Projects

1. Project title Strengthening the cause of geographical indication appellation of major

spices using molecular and quality profiling techniques

Investigator(s): B. Sasıkumar, T. John Zacharıah

Location: Indian Institute of Spices Research, Calicut

Duration: 1-11-2004 to 30-04-2008

Total cost of the scheme: Rs. 23 524 lakhs

Progress of work

Summary of achievements

Molecular and biochemical characters of traded Indian pepper (Malabar pepper) was generated and transmitted to Spices Board, the nodal agency to obtain GI for the commodity and using the data, along with other detail. GI for Malabar pepper is obtained.

Developed an efficient protocol for the isolation of genomic DNA from export grade capsules of Indian, Sri Lankan and Guatemalan cardamoms which will help in the molecular characterization of the traded cardamoms. This has IPR relevance.

Physical, biochemical and molecular characterization of export grade Indian cardamom (AGEB), Guatemalan and Sri Lankan cardamoms revealed the superiority of Indian produce (AGEB).

The volatile oil of export grade capsules of India, Guatemalan and Sri Lankan cardamom has been extracted by steam distillation and analyzed. GC/MS profiling has shown a total of 31 compounds in Indian, 25 in Guatemalan and 34 in Sri Lankan cardamoms, and 23 of them are common for all three produces. The quantitative result of Indian cardamom indicates the high yield of 1,8-cineole (27.59%) and ∞-terpenyl acetate (41.65%) compared to other produce.

Developed an efficient protocol for the isolation of genomic DNA from export grade berries of black pepper from India, Vietnam, Indonesia and Malaysia.

Molecular profiling (RAPD/IISR) of traded black pepper samples from India, Vietnam, Indonesia and Malaysia revealed a comparatively high genetic similarity within the samples from particular country than between any two countries. This has IPR relevance.

Characterized export grade Indian and Chinese ginger based on physical, biochemical and molecular parameters.

Characterized export grade turmeric based on physical, biochemical and molecular parameters.

Technology developed

An efficient protocol for the isolation of high molecular weight DNA from powdered berries of traded black pepper.

II. Project title Cloning of Phytophthora resistance and defense genes from Piper

colubrinum

Investigator(s): K. Johnson George, M. Anandaraj

Location: Indian Institute of Spices Research, Calicut

Duration. November 2004 to 2007

Total cost of the scheme: Rs. 16,53,000

Progress of the work

Different methods of gene walking viz, Amplifications using (1) degenerate random primers and R gene specific primers from the cloned fragment and (2) adaptor ligated PCR was attempted in *P. colubrinum*. Amplified products were recovered from the attempts of gene walking using DNA and RNA.

Ligation mediated walking on cDNAs from plants challenged with *Phytophthora* resulted in the amplification of fragment of size of approximately 400, which was cloned.

III. Project title: Chemical characterization of Cinnamomum germplasm

Investigator(s): N.K. Leela, J. Rema

Location: Indian Institute of Spices Research, Calicut

Duration: 1.3.05 to 31.8.2008

Total cost of the scheme 42,75,500

Progress of the work

Eighty two accessions of *Cinnamomum verum*, collected from IISR Research Farm, Peruvannamuzhi, were evaluated for bark oil and oleoresin contents and oil composition. The oil content varied from 0.3% to 3.0%, where as oleoresin content ranged from 3.3 to 15.23% in these accessions. Maximum oil content was obtained from the accession No. 290 (3.0%) which was followed by accession no 309 (2.3%). Accession numbers 202, 338 and 548 yielded 2% oil. Accession nos. 265, 290, 301, 309, 363, 376, 378, 490, 492 and 507 contained above 10% oleoresin.

The chief constituent of the bark oil was cinnamaldehyde, which varied from 4.5% (Accn No. 210) to 59.3% (Accn No. 311). Other major constituents were eugenol (0.99 - 15.26%), benzyl benzoate (1.7-48.7%), t-caryophyllene (2.7-27.7%) and linalool (1.2-26.1%). Accn Nos. 290 and 309 contained 48.4% and 51.6% cinnamaldehyde respectively.

Eighty seven accessions of *Cinnamomum* germplasm were analyzed for leaf oil composition by GC-MS analysis. The major constituents of the oil were eugenol (75-98%) and eugenyl acetate (0.11-35.6%) in all the

accessions except Acc No 405 Acc no 405 was identified as the benzyl benzoate chemotype of C verum, which contained about 76 8% benzyl benzoate

Essential oil yield and composition of fruits of *C verum* and *C malabatrum* was determined during March to May 2007. Both the oils were dominated by linalool during the initial stages of fruit development. However, the concentration of linalool was higher in *C malabatrum* (60.5%) compared to that of *C verum* (25%). Subsequently the concentration of linalool declined with the advancement of fruit maturity. The essential oils from ripened fruits were rich in cadinene and its analogues (43% in *C verum* and 54% in *C malabatrum*).

IV Project title Molecular characterization and maintenance of National repository of

Phytophthora

Investigator(s) Dr M Anandaraj

Dr A Ishwara Bhat Dr R Suseela Bhai

Location Indian Institute of Spices Research, Calicut

Duration: January 2005- January 2008

Total cost of the scheme Rs 25,53,000/-

Progress of work

Phytophthora isolates collected from different hosts were deposited in the National Repository of Phytophthora (NARPH), IISR, Calicut Collection was made during different time. Along with those, new 45 isolates collected from various places of India were added to the repository. Samples of infected leaves, roots, stems; spikes, fruits and soil were collected from different places and used for isolation. The total collection of 447 Phytophthora isolates were maintained at room temperature in agar slants overlaid with liquid paraffin and sterile distilled water kept in small screw cap bottles. Periodic sub culturing at six month interval was done for maintenance of the cultures. Phytophthora isolates survive in sterile water from six months to one year. Cryopreservation protocols were standardized for long term storage of Phytophthora in which skimmed milk could be used as a suitable cryoprotectant followed by DMSO and glycerol.

Morphological characterization

Colony morphology, growth rate on agar, caducity, mating type determination, pathogenicity test, *Invitro* screening of *Phytophthora* isolates against the biocontrol agent Fluorescent pseudomonads, IISR6 and fungicide resistance were studied for different *Phytophthora* isolates in order to understand the intra specific and inter specific diversity. Carrot agar was used to study the colony morphology, growth rate at different temperatures, sporangial characters and mating type determination. The phenotypic characters of these isolates varied intra specifically and inter specifically. The LB ratio of the P. *capsici* isolates ranged from 1.7-2.7 and mean pedicel length ranged from 38.2-209 m. Mating type determination of *Phytophthora* isolates done by the single unknown isolate method in which a pure culture of each isolate was paired with known A1 and A2 tester on carrot agar plates containing sitosterol (30mg/I) 30 mm from each other

Molecular characterization of Phytophthora

Molecular characterization starts with ITS PCR ITS region has typically been most useful for molecular systematics at the species level, and even within species (e.g., to identify geographic races). The ITS region of

the isolates were amplified using the primers ITS 6 (5 GAAGGTGAAGTCGTAACAAGG-3') and ITS 4 (5-TCCTCCGCTTATTGATATG-3) in order to identify the *Phytophthora* isolates. The polymerase chain reaction (PCR) amplified a product of ~800bp to 1 200bp, from the isolates as routinely observed in the amplification of ITS region using ITS 4 and 6 universal primers. The ITS amplicons were digested with restriction enzymes to reveal the species identity and to reveal the intra and inter specific variations among the isolates. High leve's of intraspecific and interspecific variability in the ITS regions were observed among all the isolates. RFLP fingerprints clearly showed the existence of four subgroups within *P capsici* from black pepper.

For the confirmation of the species identity, ITS amplicons were sequenced. The entire sequence of ITS 1, ITS 2 and 5 8S, partial sequences of 28 S and 18S regions were obtained for *P capsici, P palmivora* and *P meadii*. Based on these sequences species specific primers were designed using Clustal W. This could be used as a rapid detection technique for the three species from host plants and soil.

V Project title Studies on nematode problems of seed spice crops

Investigator(s)

Location CCS Haryana Agricultural University, Hisar

Duration 1 4 2005 to 31 3 2008

Total cost of the scheme Rs 9,59,312/-

Progress of work

Summary of achievements

Seed treatment in cumin with carbosulfan @ 3 0% (w/w) as seed dressing and 0 1% (1000 ppm) as seed soaking for 6 h has been found effective against *Meloidogyne* spp

Mustard and neem cake as soil application @ 5-10 g/kg soil has also shown improvement in plant growth parameters and reduction in nematode galling

Soil application of neemate (neem based granular pesticide) has not been found effective against Meloidogyne spp in fenugreek, coriander and cumin

None the lines of fenugreek and coriander have been found resistant to M incognita whereas all the lines of fennel showed resistant reaction to this nematode

RKB-68 strain of *Bacillus* spp in coriander and strains RKB 68 and RKB-91 in fenugreek have shown promising results in improving plant growth parameters and reducing root-knot nematode infection under pot conditions

Field evaluation of various effective practices for the management of root-knot nematode (Meloidogyne spp) in fenugreek and coriander crops showed maximum performance of mustard cake application @ 5q/ha, followed by soil treatment with carbofuran @ 1 kg a i /ha and seed treatment with carbosulfan @ 3 0% on a i basis (w/w)

List of Publications

Dholi

1. Singh, S.P. and Dwivedi, D.K. 2007. Impact of zinc, boron and iron elements on yield and economics of ginger (*Zingiber officinale* Rosc.). International Journal of Agriculture Science 3(1): 136-138

Guntur

- 2. Girldhar, K., Sarada, C. and and Reddy, Y.T. 2008. Efficacy of biofertilizers on the performance of rain fed coriander (Coriandrum sativum L.) in vertisols. J. Spices Aromatic Crops 17(2): 98-102.
- 3. Giridhar, K., Sarada, C. and Reddy, Y.T. 2008. Influence of micronutrients on growth and yield of coriander in rain fed vertisols. J. Spices Aromatic Crops 17(2), 187-189.
- 4. Sarada, C. and Gıridhar, K. 2008. Threats in production of coriander (*Coriandrum sativum L.*) in Andhra Pradesh. J. Spices Aromatic Crops 17(2): 158-162.
- Sarada, C. Giridhar, K. and Rao, N.H.P.2008. Studies on genetic variability, heritability and genetic advance in Fenugreek (*Trigonella foenum-graecum* L.), J. Spices Aromatic Crops 17(2): 163-166.
- 6. Sarada, C., Giridhar, K. and Rao, N.H.P. 2008. Studies on character association in fenugreek (*Trigonella foenum-graecum* L.). J. Spices Aromatic Crops 17(2): 82-84.
- 7. Sarada, C., Giridhar, K and Rao, N.H.P. 2008. Effect of bio-regulators and time of application on growth and yield of coriander (*Coriandrum sativum*) J. Spices Aromatic Crops 17(2):183-186.

Hisar

- 8 Raj, H. and Thakral, K. K. 2008. Effect of chemical fertilizers on growth, yield and quality of fennel (Foeniculum vulgare Miller). J. Spices Aromatic Crops 17(2): 134-139.
- Tehlan, S.K. and Thakral, K.K. 2008. Effect of different levels of nitrogen and leaf cuttings on leaf and seed yield of coriander (Coriandrum sativum)
 Spices Aromatic Crops 17(2): 180-182.
 - 10 Thakral, K.K. and Tehlan, S.K. (2006) Performance of fennel varieties for growth and seed yield traits Haryana J. Horc. Sci. 35 (3 & 4): 351-352. (Published in 2008).
 - 11. Thakral, K.K., Tehlan, S.K and Partap, PS (2006) Varietal evaluation in fenugreek for growth and seed yield. Haryana J. Hort Sci. 35 (3 &4), 344-345 (*Published in 2008*).

Jobner

 Jain, N.K., Jat N.L. and Choudhary G.R. 2007 Response of fennel (Foeniculum vulgare Mill.) to inorganic nitrogen, farmyard manure and Azospirillum. Indian Journal of Agricultural Sciences. 77(6): 376-378.

- 13 Rajput, S S and Singh, D 2007 Observation on Hybrid Vigour for Seed Yield and Quality Traits in Fennel In Singh, K, Jakhar, M L and Singn, D (Eas.) Multitherapic Medicinal and Spiceal Plants Vol. 1. Aavishkar Publishers, Jaipur Pp. 286-291
- 14 Rajput, S S , Singhania, D L , Singh, D and Jakhar, M L 2007 Aspects of heterosis in fennel A spice with high therapeutic index. In Singh, K , Jakhar, M L and Singh, D (Eds.), Multitherapic Medicinal and Spiceal Plants. Vol. 1. Aavishkar Publishers, Jaipur. Pp. 292-298.
- 15 Singh, D 2007 Medicinally important Seed Spices Related R & D Activities in Arid and Semi Arid Regions In Singh, K, Jakhar, M L and Singh, D (Eds.), Multitherapic Medicinal and Spiceal Plants Vol. 1. Aavishkar Publishers, Jaipur Pp. 31-56
- 16 Singh, D and Rajput, S S 2007 Fenugreek (A Wonder Medicinal herb) Crop Improvement Studies In Singh, K, Jakhar, M L and Singh, D (Eds.), Multitherapic Medicinal and Spiceal Plants Vol. 1 Aavishkar Publishers, Jaipur Pp. 302-306
- 17 Singh, D., Rajput, S.S., Jakhar, M.L. and Singh, V.V. 2007. Fennel (a Potential Medicinal Herb). Exploitable Variation in Yield Attributes. In Singh, K., Jakhar, M.L. and Singh, D. (Eds.), Multitherapic Medicinal and Spiceal Plants. Vol. 1. Aavishkar Publishers, Jaipur. Pp. 307-310.
- 18 Singh, VV, Singhania, DL, Sastry, EVD, Singh, D and Rajput, SS 2007 Relative Efficiency of Different Population Improvement Methods in Fennel Multitherapic Medicinal & Spiceal Plants Vol 1 Edited by Singh, K, Jakhar, ML and Singh, D, Aavishkar Publishers, Distributors, Jaipur Pp 324-327
- 19 SinghKumhar, B L, Sastry, E V D and Singh, D 2007 Some Aspects of Mutation Breeding in Fenugreek under Field Evaluation In Singh, K, Jakhar, M L and Singh, D (Eds.), Multitherapic Medicinal and Spiceal Plants Vol. 1. Aavishkar Publishers, Jaipur Pp282-285

Mudigere

20 Dushyantha Kumar, B M, Narayanswamy, M and Rangaswamy, S D 2007 Performance of cardamom clones (Malabar type) under high elevation and high rainfall areas in Karnataka, Journal of Plantation Crops, 35(2) 114-115

Panniyur

21 Vanaja, T, Neema, VP, Rajesh, R and Mammootty, KP 2007 Graft recovery of Piper nigrum L runner shoots on Piper colubrinum rootstocks as influenced by varieties and month of grafting Journal of Tropical Agriculture, 45 (1 & 2) 61-62

Peechiparai

Swarna Piria, Prem Joshua, J., Gailce Leo Justin, C. and Jayasekhar. 2007. Effect of biofertilizers on the growth and yield of cinnamon (Cinnamonum zeylanicum). Indian J. Agril. Res. 41 (4). 310-312.

Pundıbarı

23 Bandyopadhyay, S, Bhattacharya, PM, Chowdhury, A K and Dash, S K 2007 Management of leaf blotch and leaf spot of turmeric Current Agricultural Research 20 (1-2) 1-8

Raigarh

- 24. Singh A. K. 2007. Screening of turmeric cultivars against *Taphria* and *Colletotricum* leaf spot diseases. Indian J. Plant Protection 35:143.
- 25. Singh A. K. 2007. Effect of weather parameters and integrated disease management of powdery mildew of coriander. Indian J. Plant Protection 35:359-360.

Sirsi

 Lokesh, M.S., Hegde, H.C. and Naik, N. 2008. Efficacy of systemic fungicides and antagonistic organism for the management of *Phytophtora* foot rot of black pepper in arecanut cropping system.
 J. Spices Aromatic Crops 17(2): 114-121.

Solan

- 27. Dohroo, N.P. 2007. Diseases of Turmeric. In: Ravindran, P.N. Babu, K., N., Sivaraman, K. (Eds.), Turmeric-The Genus Curcuma CRC Press, pp. 155-167.
- 28 Dohroo, N.P. and Korla, B.N. 2007. Ginger Manual. Department of Vegetable Crops, Dr Y.S. Parmar University of Horticulture and Forestry, Solan. 48 pp.
- 29. Rana, N. and Korla, B.N. 2007. Evaluation of ginger germplasm for yield and quality under mid hill conditions of Himachal Pradesh Haryana Journal Horticulture Science 36 (3&4).

List of Research Programmes

Project Code	Title	Centres
BLACK PEPPER		
PEP/CI/1	Genetic Resources	
PEP/CI/1.1	Germplasm collection, characterization, evaluation and conservation	Chintapalle, Dapoli, Panniyur, Pundibari, Sirsi and Yercaud
PEP/CI/2	Hybridization Trial	
PEP/CI/2.1	Intervarietal hybridization to evolve high yielding varieties	Panniyur
PEP/CI/3	Coordinated Varietal Trial (CVT)	
PEP/CI/3.1	CVT 1991 – Series IV	Yercaud
PEP/CI/3.2	CVT 2000 – Series V Panniyur, Sırsi and Ambalavayal	Chintapalle, Pampadumpara,
PEP/CI/3.3	CVT 2006 Pampadumpara, Pundibari,	Chintapalle, Dapoli, Panniyur, Sirsi , Yercaud and Pechiparai
PEP/CM/4	Nutrient Management Trial	
PEP/CM/4.4	Development of organic package for spices based cropping system – Observational trial	Chintapalle, Sirsi, Panniyur, and Dapoli
PEP/CM/4.5	Organic farming in black pepper - 2006 Sirsı and Yercaud	Panniyur, Dapoli, Pechiparai,
PEP/CM/4.6	Effect of micronutrients in black pepper (adaptive trial)	Panniyur
PEP/CM/4.7	Rooting of orthotropic shoots in black pepper Sirsi and Yercaud	Dapoli, Pannıyur, Pechiparai,
PEP/CP/5	Disease Management Trial	
PEP/CP/5.1	Adaptive trial on management of Phytophthora foot rot of black pepper in farmers field	Chintapalle, Dapoli, Panniyur, Pampadumpara, Mudigere and Sirsi
PEP/CP/5.2	Trail on management of <i>Phytophthora</i> foot rot of black pepper in existing plantation	Chintapalle, Dapoli, Panniyur, Pampadumpara, Mudigere and Sirsi

PEP/CP/5 3	Trail on management of <i>Phytophthora</i> foot rot of black pepper in new plantation	Chintapalle Dapoli, Panniyur, Pampadumpara Pechiparai, Mudigere and Sirsi
PEP/CP/6	Pest Management Trial	
PEP/CP/6 1	Management of scale-insects of black pepper with organic products	Mudigere and Pampadumpara
CARDAMOM		
CAR/CI/1	Genetic Resources	
CAR/CI/1 1	Germplasm collection, characterization, evaluation and conservation	Mudigere and Pampadumpara
CAR/CI/2	Hybridization and Selection	
CAR/CI/2 1	Evaluation of OP progenise under intensive management	Mudigere
CAR/CI/3	Coordinated Varietal Trial	
CAR/C1/3 4	CVT 2000- Series IV	Mudigere and Sakleshpur
CAR/CI/3 5	CVT 2005 series V	Pampadumpara and Mudigere
CAR/CI/3 6	CVT 2007-series VI	Mudigere, Pampadumpara and Sakleshpur
CAR/CI/4	Varietal Evaluation Trial (VET)	
CAR/CI/4 1	Initial evaluation trial - I	Mudigere
CAR/CI/4 2	Initial evaluation trial - II	Mudigere
CAR/CM/5	Nutrient Management Trial	
CAR/CM/5 2	Effect of biofertilizer, Azospirillum on cardamom	Mudigere
CAR/CM/5 3	Effect of biofertilizers, P solubilizers on cardamom	Mudigere
CAR/CM/5 4	Effect of neem cake on productivity, pest and disease incidence in cardamom	Mudigere
CAR/CP/6	Pest Management Trial	
CAR/CP/6 1	Bioecology of natural enemies of major pests of cardamom	Mudigere
CAR/CP/6 2	Estimation of quantitative and qualitative losses due to thrips damage in cardamom	Mudigere
CAR/CP/6 3	Management of shoot fly in cardamom	Mudigere
CAR/CP/6 4	Management of cardamom root grub through entomopathogenic nematodes	Pampadumpara

CAR/CP/6 5	Trial on management of paricle and clump rot of cardamom in existing plantation	Mudigere and Pampadumpara
CAR/CP/6 6	Trial on management of panicle and clump rot of cardamom in new plantation	Mudigere and Pampadumpara
GINGER		
GIN/CI/1	Genetic Resources	
GIN/CI/1 1	Germplasm collection, characterization, evaluation and conservation	Dholi, Kumarganj, Pottangi, Pundibari, Raigarh, Chintapalle and Solan
GIN/CI/2	Coordinated Varietal Trial	
GIN/CI/2 1	CVT 2000 - Series V	Raigarh and Pottangi
GIN/CI/2 2	CVT 2005 - Series VI	Solan
GIN/CI/2 3	CVT 2006 - Series VII	Kumarganj, Pottangi and Pundibari
GIN/CI/3	Varietal Evaluation Trial	
GIN/CI/3 1	Initial evaluation trial (IET 2006)	Raigarh, Solan, Pottangi and Dholi
GIN/CI/3 2	Comparative yield trial	Pottangi
GIN/CI/4	Quality Evaluation Trial	
GIN/CI/4 1	Evaluation of germplasm for quality	Solan
GIN/CM/5	Nutrient Management Trial	
GIN/CM/5 1	Effect of micronutrients on ginger	Kumarganj, Pottangi, and Raigarh
GIN/CM/5 2	Organic farming in ginger 2006	Solan, Pundibari, Pottangi, Dholi and Kumarganj
GIN/CP/6	Disease Management Trial	
GIN/CP/6 1	Disease surveillance and etiology of rhizome rot in ginger	Solan
GIN/CP/6 2	Biocontrol studies on rhizome rot of ginger (final report)	Kumarganj and Pottangi
GIN/CP/6 3	Integrated management of <i>Pythium</i> , Fusarium and <i>Ralstonia</i> on ginger (final report)	Kumarganj, Solan Pundibari and Raigarh
GIN/CP/6 4	Survey and monitoring of diseases in ginger	Pundibari and Raigarh
GIN/CP/6 5	Management of rhizome rot in ginger	Chintapalle and Sirsi

TURMERIC

TUR/CI/1	Genetic Resources	
TUR/CI/1 1	Germplasm collection, characterization, evaluation and conservation	Coimbatore, Dholi, Jagtial, Kumarganj, Pottangi, Pundibari and Raigarh
TUR/CI/2	Coordinated varietal trial	
TUR/CI/2 1	CVT 2000 - Series V	Jagtial and Raigarh,
TUR/CI/2 2	CVT 2004 Series VI	Chintapalle, Coimbatore, Kumarganj, Pottangi, Pundibari and Raigarh
TUR/CI/3	Varietal evaluation trial	
TUR/CI/3 1	Comparative yield trial 2005-06	Jagtial and Pottangi
TUR/CI/3 2	Initial evaluation trial 2006	Kumarganj, Pottangi and Pundibari
TUR/CI/4	Quality evaluation trial	
TUR/CI/4 1	Quality evaluation of germplasm	Coimbatore
TUR/CI/4 2	Impact of environment on quality of turmeric	Coimbatore
TUR/CM/5	Nutrient Management Trial	
TUR/CM/5 1	Effect of biofertilizer, <i>Azospirillum</i> on turmeric (final report)	Dholi and Kumarganj
TUR/CM/5 2	Effect of organic farming in turmeric	Dholi
TUR/CM/5 3	Organic farming in turmeric	Coimbatore, Dholi, Jagtial, Pottang and Pundibari
TUR/CM/5 4	Efficacy of biocontrol agents for control of rhizome rot of turmeric	Pottangi
TUR/CM/5 5	Effect of micronutrients on turmeric	Pottangi and Raigarh
TUR/CP/6	Disease Management Trial	
TUR/CP/6 1	Survey and identification of disease causing organisms in turmeric and screening of turmeric germplasm against diseases	Coimbatore, Pundibari and Raigarh
TUR/CP/6 2	Investigations on the causal organism of rhizome rot of turmeric and screening of biocontrol agents for its management (final report)	Kumarganj

TREE SPICES

TSP/CI/1 TSP/CI/1.1	Genetic Resources Germplasm collection, characterization, evaluation and conservation of clove,	Dapoli and Yercaud/
TSP/CI/1.1		Dapoli and Yercaud/
	nutmeg and cinnamon	Pechiparai
TSP/CI/2	Coordinated Varietal Trial	
TSP/CI/2.1	CVT 1992 - clove	Yercaud and Pechiparai
TSP/CI/2.2	CVT 2001- nutmeg	Dapoli and Pechiparai
TSP/CI/2.3	CVT 2001 - cassia	Pechiparal
TSP/CM/2	Propagation/Multiplication Trial	
TSP/CM/2.1	Softwood grafting in clove	Dapoli
TSP/CP/3	Disease Management Trial	
TSP/CP/3.1	Survey for disease incidence in tree spices	Dapoli and Pechiparai
SEED SPICES		
CORIANDER		
COR/CI/1	Genetic Resources	
COR/CI/1.1	Germplasm collection, description, characterization, evaluation, conservation and screening against diseases	Coimbatore, Dholi, Guntur, Hisar, Jagudan, Jobner and Kumarganj
COR/CI/2	Coordinated Varietal Trial	
COR/CI/2.1	CVT 2001 - Series V (final report)	Coimbatore
COR/CI/2.2	CVT 2004 - Production of leafy type coriander during off-season	Coimbatore, Guntur and Hisar
COR/CI/2.3	CVT 2005	Jagudan, Jobner, Guntur, Dholi, Raigarh, Hisar and Kumarganj
COR/CI/3	Varietal Evaluation Trial	
COR/CI/3.1	Initial evaluation trial	Hisar, Guntur, Jobner, Kumarganj and Jagudan
COR/CI/4	Quality Evaluation Trial	
COR/CI/4.1	Quality evaluation in coriander	Jobner
COR/CM/5	Nutrient Management Trial	
COR/CM/5.1	Effect of biofertilizer, Azospirillum on coriander	Dholi
COR/CM/5.2	Effect of bio-regulators on coriander	Jobner
COR/CM/5.3	Identification of drought/ alkalinity tolerant source in coriander	Guntur , Colmbatore and Kumarganj

COR/CM/5 4	Role of rhizobacteria in growth promotion of coriander	Coimbator, Guntur, Hisar and Jagudan
COR/CP/6	Disease Management Trial	
COR/CP/6 1	Management of powdery mildew and stem gall in coriander	Coimbatore, Kumarganj, DholiJagudan, Jobner,and Raigarh
CUMIN		
CUM/CI/I	Genetic Resources	
CUM/CI/1 1	Germplasm collection, characterization, evaluation conservation and screening against diseases	Jagudan and Jobnet
CUM/CI/2	Coordinated Varietal Trial	
CUM/CI/2 1	CVT 2005	Jobner and Jagudan
CUM/CI/3	Varietal Evaluation Trial	
CUM/CI/3 1	Initial evaluation trial	Jobner and Jagudan
CUM/CI/4	Quality Evaluation Trial	
CUM/CI/4 1	Quality evaluation in cumin	Jobner
CUM/CP/5	Nutrient management trial	
CUM/CP/5 1	Identification of drought tolerance	Jobner
CUM/CP/5 2	Role of rhizobacteria on growth and yield of cumin	Jagudan
CUM/CP/6	Disease Management Trial	
CUM/CP/6 1	Management of wilt and blight diseases in cumin	Jagudan and Jobner
FENNEL		
FEL/CI/1	Genetic Resources	
FNL/Cl/1 1	Germplasm collection, characterization, evaluation, conservation and screening against diseases	Dholi, Hisar, Jagudan, Jobner and Kumarganj
FNL/CI/2	Coordinated Varietal Trial	
FNL/CI/2 1	CVT 2004 -Series V	Dholi, Hisar, Jagudan, Jobner and Kumarganj
FNL/CI/2 2	CVT - Transplant early rabi 2006	Jagudan
FNL/CI/2 3	CVT 2007	Jagudan
FNL/CI/3	Varietal Evaluation Trial	
FNL/CI/3 1	Initial evaluation trial	Hisar, Jobner , Kumarganj and Jagudan

FNL/CI/4	Quality evaluation trial	
FNL/CI/4 1	Quality evaluation in fennel	Jobner
FNL/CM/5	Nutrient Management Trial	
FNL/CM/5 1	Effect of biofertilizer, Azospirillum on fennel	Dholi
FNL/CM/5 2	Identification of drought/alkalinity tolerance source in fennel	Kumarganj
FNL/CM/5 3	Role of rhizobacteria on growth and yield of fennel	Jagudan
FENUGREEK		
FGK/CI/1	Genetic Resources	
FGK/CI/1 1	Germplasm collection, characterization, evaluation conservation and screening against diseases	Dholi, Guntur, Hisar, Jagudan, Jobner and Kumarganj
FGK/CI/2	Coordinated Varietal Trial	
FGK/CI/2 1	CVT 2001 - Series V (final report)	Jagudan
FGK/CI/2 2	CVT 2005 - Series VI	Jobner and Hisar
FGK/CI/2 3	CVT 2006	Kumarganj, Dholi, Guntur and Jagudan
FGK/CI/3	Varietal Evaluation Trial	
FGK/CI/3 1	Initial evaluation trial	Guntur, Hisar, Jagudan, Kumarganj and Jobner
FGK/CM/4	Nutrient Management Trial	
FGK/CM/4 1	Effect of biofertilizers, Azospirillum/ Rhizobium on fenugreek (final report)	Dholi
FGK/CM/4 2	Identification of drought/tolerance source in fenugreek	Jobner and Guntur
FGK/CM/4 3	Effect of bio-regulators on fenugreek	Jobner, Coimbatore, Dholi and Kumarganj
FGK/CM/4 4	Role of rhizobacteria on growth and yield of fennel	Dholi, Guntur, Hisar, Jagudan and Kumarganj
PAPRIKA		
PAP/CI/1 1	Germplasm collection, characterization, evaluation and conservation of paprika	Coimbatore and Guntur

Staff Position

PROJECT COORDINATOR'S OFFICE

Project Coordinator : Dr M Anandaraj Scientist SS (Hort.) : Dr D Prasath

Technical Information Officer : Dr Johny A Kallupurackal

Personal Assistant : Ms Alice Thomas
Supporting staff : Mr K Chandran

COORDINATING CENTRES

1. Cardamom Research Station, KAU, Pampadumpara

1. Breeder : Vacant (July 2006)

(Post shifted to RARS Ambalavayal)

2. Agronomist (Hort.) : Vacant

Jr. Entomologist
 Farm Assistant (Sel. Gr.)
 Lab Assistant (Grade II)
 Peon
 Dr A Joseph Rajkumar
 Mr C G Pradeep
 Mr C S Manoj
 Mr Paulose Mathew

2. Pepper Research Station, KAU, Panniyur

Pathologist (Assoc. Professor)
 Jr. Breeder (Asst. Professor)
 Dr K P Mammootty
 Dr V P Neema

3. Jr. Pathologist : Vacant
4. Jr. Horticulturist (Agronomy) : Vacant

5. Farm Supervisor (Gr. II)
6. Farm Supervisor (Sr. Gr.)
7. Farm Supervisor (Gr. I)
8. Lab Assistant (Gr. III)
9. Mr R K Lakshmanan
9. Mr P Muralidharan
9. Mr P Krishnan
9. Ms Nirmala Chellath

9. Peon (Sel. Gr.) : K Rajeev

3. Regional Research Station, UAS (Bangalore), Mudigere

Pathologist
 Agronomist (Hort.)
 Dr. S. D. Rangaswamy
 Mr. K. M. Devaraju

3. Breeder : Dr B M Dushyanthakumar

4. Jr. Entomologist : Dr D Jemla Naik
5. Technical Assistant : Mr Narayana

Mr V Mallikari par

6. Technical Assistant : Mr V Mallikarjunappa

7. Messenger : Ms Savithri

4. Agricultural Research Station, UAS (Dharwad), Sirsi

Jr. Pathologist (Assoc. Prof.)
 Jr. Horticulturist
 Mr. Nagesh Naik
 Technical Assistant
 Mr G V Heregowder

5. Horticultural Research Station, TNAU, Yercaud

Agronomist (Hort.)
 Jr. Breeder (Hort.)
 Dr V Lakshmanan
 Dr R Swarnapiria

(Posted at HRS Pechiparai)

3. Lab Assistant : Mr P Pappu

6. Department of Spices & Plantation Crops, TNAU, Coimbatore

Breeder (Horticulturist)
 Jr. Pathologist
 Dr. (Mrs.) N. Shoba
 Dr. P. Muthulakshmi
 Agricultural Assistant
 Mr R Swaminathan

7. Horticultural Research Station, ANGRAU, Chintapalle

1. Horticulturist : Sri D Lakshmınarayana

2. Junior Pathologist : ' Dr. N. Rajk

3. Technical Assistant : Post filled on contract basis

from 26-5-2007

8. Regional Agricultural Research Station, ANGRAU, Jagtial

1. Jr. Pathologist : Ms M Prameela

2. Jr. Horticulturist : Mrs K Uma Maheshwari

3. Technical Assistant : Mr G. Srikanth :

9. Horticultural Research Station, ANGRAU, Guntur

Horticulturist
 Jr. Breeder (Hort.)
 Smt C Sarada
 Sri K Giridhar

3. Sub Assistant : Mr U Veerabhadra Rao

10. Department of Vegetable Crops, Dr YSPUHF, Solan

Breeder (Olericulturist)
 Jr. Pathologist
 Dr N P Dohroo
 Jr. Biochemist
 Field Assistant
 Dr Neerja S Rana
 Mr Rajeshwar Chauhan

11. High Altitude Research Station, OUAT, Pottangi

Breeder
 Jr. Breeder
 Mr D K Dash
 Technical Assistant
 Mr L C Murmu
 Technical Assistant
 Mr L K Mishra

12. Department of Genetics and Plant Breeding, SKN College of Agriculture, RAJAU, Johner

Sr. Breeder
 Breeder
 Dr EVD Sastry
 Dr Dhirendra Singh

3. Jr. Agronomist : Dr N L Jat

Jr Pathologist Dr K S Shekhawat 5 Jr Biochemist Vacant Dr S S Rajput Technical Assistant 6 7 Technical Assistant Mr S R Kumawat 13 Main Spices Research Station, SDAU, Jagudan 1 **Pathologist** Dr K D Patel 2 Jr Breeder Mr G M Patel Technical Assistant Mr S R Chaudhari 3 14 Department of Vegetable Crops, CCS HAU, Hisar 1 Horticulturist/Oleoriculturist Dr K K Thakkral Dr Suresh Tehlan Assistant Scientist (VC) 15 Dept of Horticulture, Tirhut College of Agriculture, RAU, Dholi Dr S P Singh Horticulturist 2 Jr Pathologist Dr A K Mishra Technical Assistant Dr A N Mishra 16 Dept of Vegetable Science, NDUAT, Kumarganj 1 Horticulturist Dr J Dixit 2 Jr Pathologist Dr R P Saxena Jr Breeder 3 Dr V P Pandey Technical Assistant 4 Mr R K Gupta 5 Technical Assistant Mr VK Singh 17 Dept of Horticulture, UBKVV, Pundibari Horticulturist Vacant 1 2 Jr Breeder Dr N Bhowmik Jr Pathologist 3 Mr S Bandyopadhyay 4 Technical Assistant Mrs A Das 5 Technical Assistant Mr B Dutta 18 Dept of Horticulture, KKV, Dapoli 7 Horticulturist Prof R N Nawale 2 Jr Pathologist Prof U A Gadre 3 Jr Breeder Prof U B Pethe 4 Technical Assistant G R Gawandi Technical Assistant Mr A B Jadhav Regional Agricultural Research station, IGAU, Raigarh 1 Horticulturist Dr C R Gupta (upto 10-3 2008) 2 Jr Breeder Vacant 3 Jr Pathologist Dr A K Singh 4 Technical Assistant Mr D S Kshatrı

Vacant)

5 Technical Assistant

AICRPS-Budget Provision 2007-08 (Rs. in lakhs)

Name of the centres	Pay and	Pay and Allowances		TA.		RC	Tech. Assessment	Total RC	Gran	Grand Total	Grand
	Total	ICAR	Total	ICAR	Total	ICAR	(ICAR)	(ICAR)	ICAR Share	State Share	Total
Pampadumpara(KAU)	3.017	2.263	0.300	0.225	1.800	1.350		1.350	3.838	1.279	5.117
Panniyur (KAU)	41.783	31,337	0.400	0.300	2.400	1.800	0.100	1.900	33.537	11.179	44.716
Mudigere (UAS-B)	28.667	21.500	0.400	0.300	2,400	1.800		1.800	23.600	7.867	31,467
Sirsi (UAS-D)	24.267	18.200	0.200	0.150	1.200	0.900		0.900	19.250	6,417	25.667
Yercaud (TNAU)	11.600	8.700	0.200	0.150	1.200	0.900		006.0	9.750	3,250	13.000
Coimbatore (TNAU)	10.933	8.200	0.200	0.150	1.200	0.900	0.100	1.000	9.350	3,117	12.467
Chintapalli (APAU)	4.727	3.545	0.200	0.150	1.200	0.900		0.900	4.595	1.532	6.127
Jagtial (APAU)	2.625	1.969	0.200	0.150	1.200	0.900	0.050	0.950	3.069	1.023	4.092
Guntur (APAU)	14.133	10.600	0.200	0.150	1.200	0.900	0,050	0.950	11.700	3.900	15.600
Solan (YSPUHF)	20.400	15.300	0.300	0.225	1.800	1.350	0.050	1.400	16.925	5.642	22.567
Pottangi (OUAT)	1.967	1.475	0.200	0.150	1.200	0.900	0.100	1.000	2.625	0.875	3.500
Jobner (RAJAU)	14.920	11.190	0.500	0.375	3.000	2.250	0.150	2.400	13.965	4,655	18,620
Jagudan (GAU)	10.800	8.100	0.200	0.150	1.200	0.900	0.100	1.000	9.250	3.083	12.333
Hisar (HAU)	9.737	7.303	0.200	0.150	1.200	0.900	0.100	1.000	8.453	2,818	11.271
Dholi (RAU)	3.733	2.800	0.200	0.150	1.200	0.900	0.050	0.950	3.900	1.300	5.200
Kumarganj (NDUAT)	26.267	19.700	0.300	0.225	1.800	1.350		1.350	21.275	7.092	28.367
Pundibari (BCKVV)	6.400	4.800	0.300	0.225	1.800	1.350	0.050	1.400	6.425	2.142	8.567
Dapoli (KKV)	23.333	17.500	0.300	0.225	1.800	1.350	0.050	1.400	19.125	6.375	25.500
Raigarh (IGKVV)	11.237	8.428	0.300	0.225	1.800	1.350	0.050	1.400	10.053	3.351	13.404
AICRPS Workshop					0.315	0.315		0.315	0.315		0.315
Grand Total	270.547	202.910	5.100	3.825	30.915	23.265	1.000	24.265	231,000	76.895	307.895
						-				-	

Statement of fund released to AICRPS Centers (2007-08) (Rs. in lakhs)

Name of the Centre	Allocation 2007-08	Ist half released	II nd half released	Tech. Ass.	Add. Fund released	Grand total
Pampadumpara (KAU)	3.838	3.838	the section of the se			3.838
Panniyur (KAU)	33.537	5 00	5.00	0.100	23.437	33.537
Mudigere (UAS-B)	23 60	4 300	4.30		15.00	23.60
Sirsi (UAS-D)	19.25	2.125	2.125		15.00	19 25
Yercaud (TNAU)	9.75	2.475	2 475		4.800	9.75
Coimbatore (TNAU)	9.35	2 575	2.575	0 100	4 10	9 35
Chintapalli (APAU)	4 595	2.075	2.075		0.445	4.595
Jagtial (APAU)	3.069	2.125	0.894	0.050		3.069
Guntur (APAU)	11.70	2.325	2.325	0 050	7.00	11 70
Solan (YSPUHF)	16.925	3.938	3.937	0.050	9.00	16.925
Pottangi (OUAT)	2.625	2.525		0.100		2.625
Jobner (RAJAU)	13.965	6.113	6.112	0.150	1.590	13.965
Jagudan (GAU)	9.25	3 025	3.025	0.100	3.10	9.25
Hisar(HAU)	8.453	2.425	2.229	0.100	3.699	8.453
Dholi(RAU)	3.90	1 925	1.925	0.050		3.90
Kumarganj(NDUAT)	21.275	4.638	4.637		12.00	21.275
Pundibari(BCKVV)	6.425	2.888	2.887	0.050	0.60	6 425
Dapolı(KKV)	19.125	3 538	3.537	0.050	12.00	19.125
Raigarh(IGKVV)	10.053	3.988	3 987	0.050	2.028	10.053
AICRPS Workshop	0.315		0.315			0 315
Total	231.00	61.841	54.360	1.00	113.799	231.00

Weather Data

Chintapalle

Month	Rainfall (mm)	Rainy days	Tempe	erature (°C)	Relative I	lumidity (%)
			Max	Mın	Max	Min
April' 07	94.2	7	34.3	17.5	84.5	63.3
May	71.2	5	36.8	20.8	76.0	53.6
June	342.6	13	29.4	21.0	87.6	71.5
July	91.8	9	27.6	21.3	88.2	79.1
August	201.2	15	27.2	20.6	87.0	78.0
September	246.0	14	26.7	20.8	89.3	81 2
October	275 0	11	26.7	18.0	91.0	74.4
November	20.6	1	26.9	11.8	83.4	58.2
December	0	0	26 3	10.9	81.9	51.0
January' 08	0	0	26.7	8.5	82.3	38.9.
February	20.8	2	26.7	13.5	82.8	45.1
March	88.6	7	29.8	14.8	82 7	42.5

Coimbatore

Month	Rainfall (mm)	Rainy days	Temperature (°C)		Relative Humidity (%)	
			Max	Mın	Max	Min
April' 07	57.7	5	23.9	35.3	86	40
May	80.8	4	23.7	34.5	85	47
June	60.6	5	23 6	32.1	80	7.55
July	82.0	7	23.1	29.6	84	64
August	84.3	5	22.3	30.4	89	59
September	14.4	1	21.3	31.2	85	55
October	278 8	10	21.8	30.6	90	60
November	56.5	4	19.9	29.7	90	53
December	1149	3	19.3	28 4	89	54
January'08	10.0	1	29.8	18.8	89	41
February	21.8	1	31.8	19.3	85	36
March	0	0	34.7	21.9	81	32

Dapoli

Month	Rainfall (mm)	Rainy days	Temp	erature (°C)	Relative	Humidity (%)
			Max	Min	Max	Min
April' 07	0.2	0.0	33.2	20.4	93.2	62.7
May	148	2.0	33.4	23.1	87.8	62.2
June	1273.5	23.0	31.1	24.3	940	83.0
July	971.1	27.0	28.7	23.8	95.9	92.2
August	1067.6	31.0	28 2	23.3	97.0	87.8
September	919.4	21.0	28.7	22.9	98.3	91.4
October	11.8	1.0	32 1	20.8	96.3	70.0
November	3.6	1.0	32.8	16.6	95.4	70.7
December	0.0	00	32.1	14.6	95.2	59.9
January' 08	0.0	0.0	31.57	10.71	94.48	46.23
February	0.0	0.0	29.9	116	91.9	45.9
March	16.0	2.0	32.4	17.4	91.6	50.5

Dholi

Month	Rainfall (mm)	Rainy days	Tempe	erature (°C)	Relative H	Relative Humidity (%)	
			Max	Min	Max	Min	
January' 07	21.3	7.2	923	60.6	Nil	Nil	
February	24.0	11.6	93.3	63.5	26	3	
March	27.8	14.0	87.0	47.9	21.6	3	
April	35.6	22.7	75	39	30.0	4	
May	36.5	25.6	76	41	64.0	2	
June	34.4	26.8	78	65	106.5	4	
July	31.0	26.6	90	81	698.1	23	
August	31.5	27.2	89	76	631.1	21	
September	31.6	26.8	89	75	620.4	13	
October	31.3	24.3	91	65	170.3	4	
November	28.0	17.6	90	56	18.5	1	
December	23.2	10.7	89	49	0	0	

Guntur

Month	Rainfall (mm)	Rainy days	Temp	erature (°C)	Relative H	Humidity (%)
			Max	Min	Max	Min
April' 07	25.00	2	36.5	24.3	81	42
May	26.2	3	418	27.7	61	29
June	190	8	35.7	26.5	76	55
July	262.6	12	34.15	24.48	82.4	58.1
August	224.2	11	32.3	25.1	83.8	66.1
September	171.3	10	316	24.8	87.5	68.6
October	95.8	6	31	22.7	85.5	68.1
November	66.6	2	30.8	19.4	87.8	53.1
December	0	0	30 53	18.97	84.23	47.9
January' 08	0.05	0	30 3	20.7	90.84	45
February	83.9	3	30.9	20.7	90.97	55
March	0.0	0	33.0	23.0	88.9	48.2

Hisar

Month	Rainfall	Tempe	erature (°C)	Relative H	umidity (%)
	(mm)	Max	Min	Max	Min
April' 07	2.0	38.1	177	66	23
May	46 2	398	23 8	59	27
June	167 7	38.5	26.5	72	45
July	21.0	36.9	26 5	81	52
August	71.0	35.3	26 3	86	60
September	66.3	34.0	23.7	90	55
October	00	33.7	13.9	83	27
November	0 0	29.4	10.6	88	35
December	3.8	21.5	4.8	92	39
January' 08	3 3	186	3.2	90	38
February	09	210	4.0	86	37
March	0.0	32.2	12.0	85	31

Jagtial

Month	Rainfall (mm)	Rainy days	Tempe	erature (°C)	Relative H	umidity (%)
			Max	Min	Max	Min
January'07	0.0	0	30.2	14.4	74	36
February	00	0	30.6	15.7	62	30
March	0.0	0	33 5	17.5	58	32
April	3.4	0	38.5	22.0	60	34 .
May	8.2	1	42.1	26.2	47	24
June	96.0	8	36.3	25.9	70	52
July	169.0	9	33.6	24.5	76	61
August	151.0	10	32.3	23.6	80	63
September	244.2	11	32 2	23.0	84	69
October	76 2	4	32.1	187	77	46
November	29.0	1	31 2	142	70	34
December	0.0	0	30.9	13.9	68	36

Jobner

Month	Rainfall (mm)	Rainy days	Tempe	erature (°C)	Relative H	lumidity (%)
			Max	Min	Max	Min
January'07	1.4	0	23.9	4.4	84.2	31 8
February	5.8	0	25 5	10.6	82.7	37.7
March	12.5	2	31.4	14.0	70.7	23 7
April	13	0	39.8	20.8	45.2	15.4
May	00	0	40 6	24.9	43 0	17.0
June	5.7	1	39.2	26.8	62.0	35.0
July	83.4	8	34.2	25 3	82.0	50.0
August	19.5	2	32.9	25.2	83.0	57.0
September	0.0	0	0.0	00	0.0	00
October	0.0	0	00	0.0	0.0	0.0
November	0.0	0	0.0	00	00	00
December	0.0	0	0.0	0.0	0.0	0.0

Mudigere

Month	Rainfall (mm)	Rainy days	Temp	erature (°C)	Relative	Humidity (%)
			Max	Min	Max	Min
April' 07	67.0	8	82.30	76.2	29.81	16 33
May	76.0	6	94.38	88.06	31.74	17.01
June	1102.6	18	90.06	81.40	24.88	18.15
July	1193.8	26	91.51	81.74	23.38	17.40
August	1107.4	25	91.77	85.48	23.00	17.70
September	753.4	25	89.40	78.46	26.66	18.563
October	310.6	8	88.54	78.64	26.22	18.06
November	23.2	2	85.17	75.13	26.62	17.33
December	0	0	84.45	74.45	26.69	15.81
January' 08	0	0	77.80	57.61	27.66	15.28
February	46.0	2	88.34	60.68	29.86	15 89
March	244.4	9	86.82	76.25	28.25	17.79

Panniyur

Month	Rainfall	Rainy days	Temperature	(°C)	Relative Humidity (%)
	(mm)	_	Max	Min	
January' 07	. 0	0	34.4	22.4	72.7
February	0	0	35.5	22.2	88.1
March	0	0	36.1	25.6	89.7
April	43	3	36.8	26.8	83.3
May	137.6	7	35.5	26.4	81.9
June	1048.9	24	30.7	25.8	86.9
July	1342.8	31	28.4	26.0	91.5
August	846	23	28.9	24.9	91.5
September	812.4	27	29.5	25.4	91.3
October	296.1	19	31.2	24.6	90.6
November	103.8	3	33:3	22.8	88.8
December	0	0	34.4	22.9	87.8

Pechiparai

Month	Rainfall	Rainy days	Temperature	(°C)	Relative Humidity (%)
	(mm)	_	Max	Min	
January'07	3	0	34.6	20.4	80.0
February	30	2	34.9	20.6	83.4
March	25	1	34.9	21.5	83.2
April	15	2	33.0	22.2	92.7
May	250	9	33.1	23.8	96.3
June	125	4	30.1	22.8	93.7
July	110	8	30.1	22.8	93.2
August	120	12	30 8	20.5	91.5
September	395	18	29.9	22.3	89 5
October	520	14	30 0	20 7	92 4
November	215	12	30.8	20.4	80.5
December	144	8	32 5	20 5	84.8

Pottangi

Month	Rainfall (mm)	Rainy days	Temper	rature (°C)	Relative h	lumidity (%)
		-	Max	Min	Max	Min
January' 07	20	01	25	16	82.0	62.0
February	0	0	27	17	80.0	61.0
March	18	01	31	18	84.0	60.0
April	22	01	36	22	85.0	610
May	132	04	32	20	92.0	67.0
June	421	14	30	19	96.0	80 0
July	611	17	27	18	96.0	88 0
August	760	22	27	17	98.0	88 0
September	710	14	24	17	98.0	910
October	422	08	24	16	98.0	93.0
November	210	08	22	16	87.0	74.0
December	40	02	20	14	82.0	72.0

Pundibari

Month	Rainfall (mm)	Rainy days	Tempe	erature (°C)	Relative Hu	umidity (%)
			Max	Min	Max	Min
January' 07	0	01	25.5	7.1	100	55 .
February	77.0	8	25.7	12.1	98	52
March	8.6	4	32.2	12.6	97	41
April	162.2	11	31.9	17.8	97	62
May	265.4	15	34.1	22.3	94	57
June	633.1	20	31.8	23.4	95	79
July	407.7	20	32.1	22 6	99	79
August	523.6	19	34.3	24.7	95	71
September	369.9	16	33.3	23.8	97	64
October	131.8	5	34.5	19.5	97	66
November	0	0	30.3	14.0	96	60
December	0	0	25.5	8.7	100	56

Sirsi

Month	Rainfall (mm)	Rainy days	Tempe	erature (°C)	Relative I	Humidity (%)
			Max	Min	Max	Min
April' 07	25.0	4	34.9	22.5	86.3	61.1
May	22.2	2	33.5	21.7	88.9	61.0
June	780.0	17	29.1	21.2	91.0	68.6
July	907.7	30	33.5	21.7	88.9	61.0
August	540 8	29	26.6	20.8	90.6	84.2
September	316.1	28	27.9	20.8	91.0	84.3
October	82.2	4	33.5	21.7	88.9	61.0
Novembel	27.3	2	30.1	14.6	91 5	71.1
December	0.0	0	29.8	150	91.5	65.7
January 08	0.0	0	30.2	13.1	91.3	63.2
February	16.8	1	31.1	15.3	91.2	612
March	140.6	7	32.7	173	88.0	51.6

Solan

Month	Rainfall	Rainy days	Temperatu	re (°C)	Relative Humidity (%)
	(mm)		Max	Min	
April' 07	6.2	1	30.9	133	49
May	19.6	4	33 2	16.7	50
June	86	10	32.5	19.1	63
July	111.1	10	30.4	20	81
August	342 6	13	29	20	83
September	59 8	6	28 1	17.7	80
October	52.8	2	28.4	92	56
November	0	0	25	5 1	58
December	10	3	22.3	2.3	58
January' 08	0	0	172	24	69
February	38.8	9	20.0	4.0	66
March	0	0	29.1	9.6	53

Yercaud

Month	Rainfall	Rainy days	Temperature	(°C)	Relative Humidity (%)
	(mm)	_	Max	Min	
April' 07	182.5	6	30 4	20.5	66.0
May	53.5	6	31.0	21 1	65 8
June	96.0	8	26.2	183	83.5
July	127.5	10	25 7	16.7	89.9
August	304 0	11	25.2	179	92.5
September	355.0	18	24 9	163	91.5
October	213.5	10	26 0	17.8	83 0
November	077.5	6	23.0	160	76.0
December	192.5	7	20 0	160	87.4
January' 08	8.5	1	22.5	14.4	64.4
February	30.5	1	22.5	144	64.4
March	84.0	8	24.9	17.8	81.0

AICRPS Centres

COORDINATING CENTRES

HEADQUARTERS:

Project Coordinator (Spices)

All India Coordinated Research Project on Spices

Indian Institute of Spices Research, Calicut - 673 012, Kerala

Phone: Off. (0495) 2731794 Fax: 0091-495-2731794

E-mail: aicrps@spices.res.in, pcspices@yahoo.com

	CENTRE	Telephone	Fax/E-mail
	Andhra Pradesh		
1.	Horticultural Research Station	(08937) 238244 (O)	Fax: (08937) 238244
	(Andhra Pradesh Horticultural University), CHINTAPALLE - 531 111, Dist. Visakhapatna Andhra Pradesh		Gram: AGRIVARSITY adr_hatzone@yahoo.co.in
2.	Horticultural Research Station (Andhra Pradesh Horticultural University), GUNTUR - 522 034 Andhra Pradesh	(0863) 2524053 / 2524017 (O)	Fax: (0863) 2524073/2524017 gkalidasu@yahoo.com
3.	Horticultural Research Station (Andhra Pradesh Horticultural University), JAGTIAL-505 327 Dist. Karimnagar, Andhra Pradesh	(08724) 277281, 277283 (O)	Fax: (08274) 277283 Gram: AGRIVARSITY adr_rarsjgl@yahoo.com
	Bihar		
4.	Department of Horticulture Tirhut College of Agriculture (Rajendra Agrl. University) DHOLI-843 121, Musaffarpur, Bihar	(06274) 0621-2293227 (O)	Fax: 0621-2293227 Gram: DHULI COLLAGRI tirhutag@sify.com
	Chattisgarh		
5.	Regional Agril. Research Station (Indira Gandhi Agri.University), Boirdadar Farm, RAIGARH - 496 001 Dist. Chattisgarh	(07762) 222402 (O)	Fax: (07762) 224886 / 222402 crgrars@rediffmail.com

Gujarat

Main Spices Research Station (02762)Fax: (02762-285337 (Sardarkurshinagar Dantiwada 285337/285342 (O) aicrps_jagudan@yahoo.com Agricultural University) JAGUDAN - 382 710 Dist. Mehsana, Gujarat Haryana Fax: 01662-237720/237726 7. Department of Vegetable Crops (01662) 237720-26 (Chaudharay Charan Singh (Ext. 4207) (O) /289207 Haryana Agril. University) Gram: Agrivarcity Hisar HISAR - 125 004, Haryana aicrpspices@hau.ernet.in vegcrops hau.nic.in Himachal Pradesh Department of Vegetable Crops (01792) 252329 (O) Fax: (01792) 252030 /252242 (Dr YS Parmar Univ. of Horticulture Gram: Vanudyan & Forestry), Nauni, SOLAN-173 230, vgc@spuhf.hp.nic.in Himachal Pradesh solanspices@yahoo.com Karnataka Regional Research Station (08263) 228135 (O) Fax: 08263-228135 (Univ. of Agrl. Sciences, kmdevaraju@gmail.com Bangalore) MUDIGERE-577 132 mudigere@rediffmail.com Dist. Chickmangalur, Karnataka 10. Agricultural Research Station (08384) 226797 (O) Fax: 08384-226146 / 228411 (Pepper), (Univ. of Agril. Sciences sirsipepper@sancharnet.in Dharwad) SIRSI-581 401 ars_sirsipepper@rediffmail.com Dist. Uttara Kannada, Karnataka Kerala 11. Cardamom Research Station (04868) 236263 (O) crspam@kau.in, (Kerala Agricultural University) crsp1956@yahoo.co.in PAMPADUMPARA-685 553 Dist. Idukki, Kerala 12. Pepper Research Station (0460) 2227287 (O) Fax: 0460-2227287 (Kerala Agricultural University) prspanniyure@kau.in PANNIYUR, PB No.113 prskan@sancharnet.in Kanjirangadu (P.O) Karimbam (Via), Taliparamba -670 142, Dist. Cannanore, Kerala Maharashtra 13. Department of Horticulture (02358) 282563 Fax: 02358-282064 (Konkan Krishi Vidyapeeth) 282064/282026/ /282414 /282026/282563 DAPOLI - 415 712) 282415/282130 Gram: PRINAGRI, DAPOLI Dist. Ratnagiri, Maharashtra ·Ext.221/225) parag5663 @rediff.com uday_gadre@sancharnet.in

Orissa

14. High Altitude Research Station
 (O6853) 252565 (O)
 (Orissa Univ of Agrl. & Technology),
 POTTANGI-764 039
 Dist. Koraput, Orissa
 Rajasthan

Fax: 06853-223348 / 220226 dillipidash@yahoo.com

Dept. of Genetics & Plant
Breeding, SKN College of
Agriculture (Rajasthan Agricultural
University), JOBNER-303 329
Dist. Jaipur, Rajasthan

(01425) 254041 (O)

Fax: (01425) 254022 Gram: AGRICOL JOBNER evd_sastry@yahoo.com

Tamil Nadu

 Horticultural Research Station YERCAUD - 636 602
 Dist. Salem, Tamil Nadu (04281) 222456 (O)

Fax: (04281) 222387 laksh567@yahoo.co.in

 Dept. of Spices & Plantation Crops, Horticultural College and Research Institute (Tamil Nadu Agril, University), COIMBATORE - 641 003
 Tamil Nadu (0422) 2431222/ 6611284 (O) Fax: (0422) 2445414 Gram: FARMVAR spices@tnau.ac.in

Uttar Pradesh

Department of Vegetable
 Science (Narendra Dev University
 of Agril. & Technology),
 Narendra Nagar Post,
 KUMARGANJ, Faizabad-224 229,

(05270) 262066, 262076, 262164, 262067 (O)

Fax: (05270) 262097 /262331 nduat@up.nic.in raviprakasnsaxena@reaiffmail.com

West Bengal

Uttar Pradesh

 Department of Horticulture (Uttar Banga Krishi Viswa Vidyalaya, North Bengal Campus) PUNDIBARI P.O, Dist. Cooch Behar, West Bengal - 736 165 (03582) 222545/ 270246/ 270249/ 270157 (O)

Fax: 03582-270246/270249 /225471

Gram: PUNDIBARI pundibari@yahoo.co.in janajc@rediffmail.com

VOLUNTARY CENTRES

	CENTRE	Telephone	Fax/E-mail
1.	The Associate Director Regional Agricultural Research Station (Kerala Agril. University) AMBALAVAYAL - 673 593 Dist. Wynad, Kerala	04936)260561 (O) / (04936)321964	Fax: 04936-260421 vsdevadas@kau.in vsdevadas@gmail.com rarsamb@yahoo.com
2.	The Professor & Head Horticultural Research Station (Tamil Nadu Agricultural University) PECHIPARAI - 629 161 Kanyakumari Dist., Tamil Nadu	(04651)281191 /281192 (O)	hrspp_ngc@sancharnet.in
3.	The Scientist-in-charge Regional Research Station Spices Board (Govt. of India) Donigal Post, SAKLESHPUR Karnataka - 573 134	(04868)237268 /244007 /244124(O)	Fax: Fax: 08173-244124 cardamom@sancharnet.in
4.	The Director Indian Cardamom Research Institute, MYLADUMPARA, Kailasanadu, Idukki Dist., Kerala - 685 553	(04868) 237268/ 237206(O)	Fax: Fax: 04868-237285 dirres_spices@yahoo.com

All India Coordinated Research Project on Spices

Indian Institute of Spices Research Post bag No. 1701, Marikunnu P. O., Calicut- 673 012, Kerala, India. Phone: 0495-2731794/2731410, Fax: 0495-27

Phone: 0495-27,31794/2731410, Fax: 0495-2731794, e-mail: aicrps@spices.res.in, Web site: www.aicrps.res.in